H-Bonding vs Non-H-Bonding in 100% Pyrene Methacrylate Comb Polymers: Self-Assembly Probed by Time-Resolved Emission Spectra and Temperature Dependent Fluorescence

2014 ◽  
Vol 118 (18) ◽  
pp. 4951-4962 ◽  
Author(s):  
K. Kaushlendra ◽  
S. K. Asha
Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4227
Author(s):  
Yue Song ◽  
Yongyi Chen ◽  
Ligong Zhang ◽  
Yugang Zeng ◽  
Cheng Qiu ◽  
...  

AlGaInAs quantum well (QW) lasers have great potential in the application fields of optical communications and eye-safety lidars, owing to the advantages of good gain performance. A large amount of experimental evidence indicated that carrier dynamic affects the resonant frequency and modulation response performance of QW lasers. However, the mechanism of carrier dynamic in AlGaInAs QW structure is still ambiguous for complicated artificial multilayers. In this paper, the carrier dynamic of AlGaInAs QW structure was investigated by temperature-dependent time-resolved photoluminescence (TRPL) in the range of 14 to 300 K. Two relaxation times (a fast component and a slow one) have a major impact on the PL emission spectra of the AlGaInAs QW below 200 K. The carriers prefer a fast decay channel in the low temperature regime, whereas the slow one a higher temperature. An unconventional temperature dependence of carrier relaxation is observed in both decay processes. The carriers’ lifetime decreases with the temperature increasing till 45 K and then increases with temperature up to 250 K. It is quite different from that in the bulk semiconductor. The mechanism of temperature-dependent carrier relaxation at temperatures above 45 K is a combination of dark state occupation and a nonradiative recombination process.


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


2000 ◽  
Vol 104 (17) ◽  
pp. 3964-3973 ◽  
Author(s):  
Sergey A. Nizkorodov ◽  
Warren W. Harper ◽  
Bradley W. Blackmon ◽  
David J. Nesbitt

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4239
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water–air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron X-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid–liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


RSC Advances ◽  
2020 ◽  
Vol 10 (72) ◽  
pp. 44373-44381
Author(s):  
Xiaozhe Wang ◽  
Qi Wang ◽  
Zhijun Chai ◽  
Wenzhi Wu

The thermal properties of FAPbBr3 perovskite nanocrystals (PNCs) is investigated by use of temperature-dependent steady-state/time-resolved photoluminescence and first-principle calculations.


2016 ◽  
Vol 20 (08n11) ◽  
pp. 1173-1181 ◽  
Author(s):  
Narra Vamsi Krishna ◽  
Puliparambil Thilakan Anusha ◽  
S. Venugopal Rao ◽  
L. Giribabu

Zinc phthalocyanine possessing triphenylamine at its peripheral position has been synthesized and its optical, emission, electrochemical and third-order nonlinear optical (NLO) properties were investigated. Soret band was broadened due to the presence of triphenylamine moiety. Electrochemical properties indicated that both oxidation and reduction processes were ring centered. Emission spectra were recorded in different solvents and the fluorescence yields obtained were in the range of 0.02–0.17 while the time-resolved fluorescence data revealed radiative lifetimes of typically few ns. Third-order NLO properties of this molecule have been examined using the Z-scan technique with picosecond (ps) and femtoseocnd (fs) pulses. Closed and open aperture Z-scan data were recorded with 2 ps/1 50 fs laser pulses at a wavelength of 800 nm and NLO coefficients were extracted from both the data. Our data clearly suggests the potential of this molecule for photonics applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
E. Kheirandish ◽  
N. A. Kouklin ◽  
J. Liang

Temperature-dependent photoluminescence (PL) spectroscopy is carried out to probe radiative recombination and related light emission processes in two-dimensional periodic close-packed nanopore arrays in gallium nitride (np-GaN). The arrays were produced by nonlithographic nanopatterning of wurtzite GaN followed by a dry etching. The results of Raman spectroscopy point to a small relaxation of the compressive stress of ~0.24 GPa in nanoporous vs. bulk GaN. At ~300 K, the PL emission is induced by excitons and not free-carrier interband radiative recombinations. An evolution of the emission spectra with T is confirmed to be mainly a result of a decay of nonexcitonic PL emission and less of spectral shifts of the underlying PL bands. A switching of excitonic PL regime observed experimentally was analyzed within the exciton recombination-generation framework. The study provides new insights into the behaviors and physical mechanisms regulating light emission processes in np-GaN, critical to the development of nano-opto-electronic devices based on mesoscopic GaN.


Sign in / Sign up

Export Citation Format

Share Document