Hierarchical Three-Dimensional Microbattery Electrodes Combining Bottom-Up Self-Assembly and Top-Down Micromachining

ACS Nano ◽  
2012 ◽  
Vol 6 (7) ◽  
pp. 6422-6432 ◽  
Author(s):  
Konstantinos Gerasopoulos ◽  
Ekaterina Pomerantseva ◽  
Matthew McCarthy ◽  
Adam Brown ◽  
Chunsheng Wang ◽  
...  
2019 ◽  
Vol 4 (3) ◽  
pp. 580-585 ◽  
Author(s):  
Bineh G. Ndefru ◽  
Bryan S. Ringstrand ◽  
Sokhna I.-Y. Diouf ◽  
Sönke Seifert ◽  
Juan H. Leal ◽  
...  

Combining bottom-up self-assembly with top-down 3D photoprinting affords a low cost approach for the introduction of nanoscale features into a build with low resolution features.


2007 ◽  
Vol 364-366 ◽  
pp. 437-441
Author(s):  
Yong Zhi Cao ◽  
Shen Dong ◽  
Ying Chun Liang ◽  
Tao Sun ◽  
Yong Da Yan

Ultrathin block copolymer films are promising candidates for bottom-up nanotemplates in hybrid organic-inorganic electronic, optical, and magnetic devices. Key to many future applications is the long range ordering and precise placement of the phase-separated nanoscale domains. In this paper, a combined top-down/bottom-up hierarchical approach is presented on how to fabricate massive arrays of aligned nanoscale domains by means of the self-assembly of asymmetric poly (styrene-block-ethylene/butylenes-block-styrene) (SEBS) tirblock copolymers in confinement. The periodic arrays of the poly domains were orientated via the introduction of AFM micromachining technique as a tool for locally controlling the self-assembly process of triblock copolymers by the topography of the silicon nitride substrate. Using the controlled movement of 2- dimensional precision stage and the micro pressure force between the tip and the surface by computer control system, an artificial topographic pattern on the substrate can be fabricated precisely. Coupled with solvent annealing technique to direct the assembly of block copolymer, this method provides new routes for fabricating ordered nanostructure. This graphoepitaxial methodology can be exploited in hybrid hard/soft condensed matter systems for a variety of applications. Moreover, Pairing top-down and bottom-up techniques is a promising, and perhaps necessary, bridge between the parallel self-assembly of molecules and the structural control of current technology.


Robotica ◽  
2005 ◽  
Vol 23 (4) ◽  
pp. 435-439 ◽  
Author(s):  
Kenneth Castelino ◽  
Srinath Satyanarayana ◽  
Metin Sitti

Optical tweezers have been used as versatile tools for non-contact manipulation of micrometer-sized entities. This paper proposes a hybrid micro/nanoscale manufacturing system using optical tweezers and chemical linkages for fabricating 2D and 3D micro/nanostructures. A holographic multiple trap optical tweezers system is first used to trap particles in a desired pattern. The particles are then connected to form rigid units using suitable chemistry. Connection schemes based on gold seeding, complementary-DNA linkage and streptavidin-biotin chemistry are presented and possible applications of this technique are explored. This method combines the advantages of top-down and bottom-up approaches and is compatible with organic and inorganic materials.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2047
Author(s):  
Xuehui Yan ◽  
Shujing Huang ◽  
Yong Wang ◽  
Yuanyuan Tang ◽  
Ye Tian

Manipulating materials at the atomic scale is one of the goals of the development of chemistry and materials science, as it provides the possibility to customize material properties; however, it still remains a huge challenge. Using DNA self-assembly, materials can be controlled at the nano scale to achieve atomic- or nano-scaled fabrication. The programmability and addressability of DNA molecules can be applied to realize the self-assembly of materials from the bottom-up, which is called DNA nanotechnology. DNA nanotechnology does not focus on the biological functions of DNA molecules, but combines them into motifs, and then assembles these motifs to form ordered two-dimensional (2D) or three-dimensional (3D) lattices. These lattices can serve as general templates to regulate the assembly of guest materials. In this review, we introduce three typical DNA self-assembly strategies in this field and highlight the significant progress of each. We also review the application of DNA self-assembly and propose perspectives in this field.


2011 ◽  
Vol 179-180 ◽  
pp. 1322-1326
Author(s):  
Ru Ting Xia

The aim of the present experiment was to investigate visual attentional allocation of top-down and bottom-up cues in three-dimensional (3D) space. Near and far stimuli were used by a 3D attention measurement apparatus. Two experiments were conducted in order to examine top-down and bottom-up controls of visual attention. In the experiment 1, the cue about the location of a target by means of location information. In the experiment 2, color cue by brief change of color at target locations was presented. Observers were required to judge whether the target presented nearer than fixation point or further than it. The results in experiment 1 and experiment 2 show that both location and color cue have the effect on reaction time, and that shift of attention were faster from far to near than the reverse. These findings suggest that (1) attention in 3D space might be operated with both location and color controls included the depth information, (2) the shift of visual attention in 3D space has an asymmetric characteristic in depth.


Author(s):  
Francisco Evangelista ◽  
Jeffery R. Roesler ◽  
C. Armando Duarte

This paper predicts the potential for crack propagation in concrete pavements under aircraft loading given a starter fatigue crack at the bottom of the concrete slab or a surface-initiated shrinkage crack on top of the slab. The generalized finite element method was used to evaluate the stress intensity factors for quarter elliptical cracks placed at the critical top and bottom tensile stress locations. The pavement was loaded with a single triple-dualtandem (TDT) gear and two TDTs accounting for the entire belly gears. When the pavement was loaded with the two TDT gear configuration, the analyses showed significantly higher KI (shear mode) values for surface-initiated cracks than for bottom-initiated cracks for the same crack size. Therefore, concrete slabs with preexisting surface cracks are more likely to exhibit top-down crack growth despite being designed for bottom-up fatigue cracking under certain loading conditions. The theoretical framework allows for improved assessment of the fracture susceptibility of concrete slabs under aircraft loading, specifically the potential for top-down over bottom-up cracking.


MRS Bulletin ◽  
2005 ◽  
Vol 30 (12) ◽  
pp. 952-966 ◽  
Author(s):  
Craig J. Hawker ◽  
Thomas P. Russell

AbstractAs the size scale of device features becomes ever smaller, conventional lithographic processes become increasingly more difficult and expensive, especially at a minimum feature size of less than 45 nm. Consequently, to achieve higher-density circuits, storage devices, or displays, it is evident that alternative routes need to be developed to circumvent both cost and manufacturing issues.An ideal process would be compatible with existing technological processes and manufacturing techniques; these strategies, together with novel materials, could allow significant advances to be made in meeting both short-term and long-term demands for higher-density, faster devices. The self-assembly of block copolymers (BCPs), two polymer chains covalently linked together at one end, provides a robust solution to these challenges. As thin films, immiscible BCPs self-assemble into a range of highly ordered morphologies where the size scale of the features is only limited by the size of the polymer chains and are, therefore, nanoscopic.While self-assembly alone is sufficient for a number of applications in fabricating advanced microelectronics, directed, self-orienting, self-assembly processes are also required to produce complex devices with the required density and addressability of elements to meet future demands. Both strategies require the design and synthesis of polymers that have well-defined characteristics such that the necessary fine control over the morphology, interfacial properties, and simplicity of processes can be realized. By combining tailored self-assembly processes (a “bottom-up” approach) with microfabrication processes (a “top-down” approach), the ever-present thirst of the consumer for faster, better, and cheaper devices can be met in very simple, yet robust, ways. The integration of novel chemistries with the manipulation of self-assembly will be treated in this article.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246453
Author(s):  
Connor Murphy ◽  
Yunqi Cao ◽  
Nelson Sepúlveda ◽  
Wei Li

Bottom-up self-assembly of components, inspired by hierarchically self-regulating aggregation of small subunits observed in nature, provides a strategy for constructing two- or three-dimensional intriguing biomimetic materials via the spontaneous combination of discrete building blocks. Herein, we report the methods of ultrasonic wave energy-assisted, fast, two- and three-dimensional mesoscale well-ordered self-assembly of microfabricated building blocks (100 μm in size). Mechanical vibration energy-driven self-assembly of microplatelets at the water-air interface of inverted water droplets is demonstrated, and the real-time formation process of the patterned structure is dynamically explored. 40 kHz ultrasonic wave is transferred into microplatelets suspended in a water environment to drive the self-assembly of predesigned well-ordered structures. Two-dimensional self-assembly of microplatelets inside the water phase with a large patterned area is achieved. Stable three-dimensional multi-layered self-assembled structures are quickly formed at the air-water interface. These demonstrations aim to open distinctive and effective ways for new two-dimensional surface coating technology with autonomous organization strategy, and three-dimensional complex hierarchical architectures built by the bottom-up method and commonly found in nature (such as nacre, bone or enamel, etc.).


2012 ◽  
Vol 523-524 ◽  
pp. 627-632
Author(s):  
Zhen Xing Li ◽  
Akinori Yamanaka ◽  
Masahiko Yoshino

Three dimensional (3D) nano/quantum dot array structures have attracted more and more attention due to their broad applications. A new fabrication method of multilayer ordered nano dot array with low cost and high throughput is developed in this paper. This process is combination of Top-down and Bottom-up approaches: Nano Plastic Forming (NPF) patterning of metal layer coated on the substrate as Top-down approach and self-organization by dewetting as Bottom-up approach. Effects of process conditions on 3D nano-dot array formation are studied experimentally. Regularity and uniformity of first layer nano-dot array is transferred to the second layer nano-dots by optimizing thickness of the spacer layer and Au coating layer. Multilayer ordered nano dot array structures with good alignment are obtained by repeating coating and annealing processes.


Author(s):  
Geoff Poulton ◽  
Ying Guo ◽  
Geoff James ◽  
Phil Valencia ◽  
Vadim Gerasimov ◽  
...  
Keyword(s):  
Top Down ◽  

Sign in / Sign up

Export Citation Format

Share Document