The GS-X Pump in Plant, Yeast, and Animal Cells: Structure, Function, and Gene Expression

1997 ◽  
Vol 17 (2) ◽  
pp. 189-207 ◽  
Author(s):  
Toshihisa Ishikawa ◽  
Ze-Sheng Li ◽  
Yu-Ping Lu ◽  
Philip A. Rea

This review addresses the recent molecular identification of several members of the glutathione S-conjugate (GS-X) pump family, a new class of ATP-binding cassette (ABC) transporters responsible for the elimination and/or sequestration of pharmacologically and agronomically important compounds in mammalian, yeast and plant cells. The molecular structure and function of GS-X pumps encoded by MRP, cMOAT, YCF1. and AtMRP genes, have been conserved throughout molecular evolution. The physiologic function of GS-X pumps is closely related with cellular detoxification, oxidative stress, inflammation, and cancer drug resistance. Coordinated expression of GS-X pump genes, e.g., MRP1 and YCF1, and γ-glutamylcystaine synthetase, a rate-limiting enzyme of cellular glutathione (GSH) biosynthesis, has been frequently observed.

Epigenomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 267-283 ◽  
Author(s):  
Xiuchao Geng ◽  
Youchao Jia ◽  
Yuhao Zhang ◽  
Liang Shi ◽  
Qiang Li ◽  
...  

Aim: This review aims to systematically describe the biogenesis and degradation of circular RNAs (circRNAs), discusses the major functions of circRNAs, introduces the mechanisms by which circRNAs play a role in cancer, comprehensively summarize the relationship between circRNAs and anticarcinogen resistance as well as underlying specific mechanisms in multiple cancers. Materials & methods: We screened and analyzed large quantity of scientific papers which associated with circRNAs, noncoding RNAs, function, cancer, drug resistance and chemoresistance, and then summarized in Figures 1 & 2 & Table 1. Results & conclusion: The biogenesis, degradation and function of circRNAs are specially compared with other noncoding RNAs, it can affect cancer pathogenesis and progression and are implicated in mediating resistance to various anticarcinogens in various types of cancer.


2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2019 ◽  
Vol 10 (26) ◽  
pp. 6693-6702 ◽  
Author(s):  
Wenyuan Zhao ◽  
Bin Shan ◽  
Dan He ◽  
Yuanda Cheng ◽  
Bin Li ◽  
...  

Author(s):  
Vitalii Kryvenko ◽  
Olga Vagin ◽  
Laura A. Dada ◽  
Jacob I. Sznajder ◽  
István Vadász

Abstract The Na,K-ATPase establishes the electrochemical gradient of cells by driving an active exchange of Na+ and K+ ions while consuming ATP. The minimal functional transporter consists of a catalytic α-subunit and a β-subunit with chaperon activity. The Na,K-ATPase also functions as a cell adhesion molecule and participates in various intracellular signaling pathways. The maturation and trafficking of the Na,K-ATPase include co- and post-translational processing of the enzyme in the endoplasmic reticulum (ER) and the Golgi apparatus and subsequent delivery to the plasma membrane (PM). The ER folding of the enzyme is considered as the rate-limiting step in the membrane delivery of the protein. It has been demonstrated that only assembled Na,K-ATPase α:β-complexes may exit the organelle, whereas unassembled, misfolded or unfolded subunits are retained in the ER and are subsequently degraded. Loss of function of the Na,K-ATPase has been associated with lung, heart, kidney and neurological disorders. Recently, it has been shown that ER dysfunction, in particular, alterations in the homeostasis of the organelle, as well as impaired ER-resident chaperone activity may impede folding of Na,K-ATPase subunits, thus decreasing the abundance and function of the enzyme at the PM. Here, we summarize our current understanding on maturation and subsequent processing of the Na,K-ATPase in the ER under physiological and pathophysiological conditions. Graphic Abstract


Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


Author(s):  
Hai Wang ◽  
Pranay Agarwal ◽  
Gang Zhao ◽  
Guang Ji ◽  
Christopher M. Jewell ◽  
...  

2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 818-818
Author(s):  
Nathan LeBrasseur

Abstract In response to various forms of age-associated damage, cells can enter a state of senescence. Senescent cells can compromise the health and function of a tissue, and their accumulation with advancing age is believed to contribute to age-related diseases and geriatric syndromes. In preclinical models (i.e., mice), selective elimination of senescent cells through either genetic approaches or a new class of pharmacological agents, termed “senolytics”, has been show to effectively delay, prevent, or reverse the onset and/or progression of pulmonary disease, osteoporosis, atherosclerosis, diabetes, cognitive decline, and several other conditions. Thus, considerable efforts are underway to optimize pharmacological strategies and test their effectiveness in human populations. This seminar will highlight the state-of-the-science of senolytic drugs, and the opportunities and challenges for early phase clinical trials in humans.


Sign in / Sign up

Export Citation Format

Share Document