scholarly journals Forest fire plumes over the North Atlantic: p-TOMCAT model simulations with aircraft and satellite measurements from the ITOP/ICARTT campaign

2007 ◽  
Vol 112 (D10) ◽  
Author(s):  
Peter A. Cook ◽  
Nicholas H. Savage ◽  
Solène Turquety ◽  
Glenn D. Carver ◽  
Fiona M. O'Connor ◽  
...  
2021 ◽  
Author(s):  
Leonard F. Borchert ◽  
Alexander J. Winkler

<p>Vegetation in the northern high latitudes shows a characteristic pattern of persistent changes as documented by multi-decadal satellite observations. The prevailing explanation that these mainly increasing trends (greening) are a consequence of external CO<sub>2</sub> forcing, i.e., due to the ubiquitous effect of CO2-induced fertilization and/or warming of temperature-limited ecosystems, however does not explain why some areas also show decreasing trends of vegetation cover (browning). We propose here to consider the dominant mode of multi-decadal internal climate variability in the north Atlantic region, the Atlantic Multidecadal Variability (AMV), as the missing link in the explanation of greening and browning trend patterns in the northern high latitudes. Such a link would also imply potential for decadal predictions of ecosystem changes in the northern high latitudes.</p><p>An analysis of observational and reanalysis data sets for the period 1979-2019 shows that locations characterized by greening trends largely coincide with warming summer temperature and increasing precipitation. Wherever either cooling or decreasing precipitation occurs, browning trends are observed over this period. These precipitation and temperature patterns are significantly correlated with a North Atlantic sea surface temperature index that represents the AMV signal, indicating its role in modulating greening/browning trend patterns in the northern high latitudes.</p><p>Using two large ensembles of coupled Earth system model simulations (100 members of MPI-ESM-LR Grand Ensemble and 32 members of the IPSL-CM6A-LR Large Ensemble), we separate the greening/browning pattern caused by external CO<sub>2</sub> forcing from that caused by internal climate variability associated with the AMV. These sets of model simulations enable a clean separation of the externally forced signal from internal variability. While the greening and browning patterns in the simulations do not agree with observations in terms of magnitude and location, we find consistent internally generated greening/browning patterns in both models caused by changes in temperature and precipitation linked to the AMV signal. These greening/browning trend patterns are of the same magnitude as those caused by the external forcing alone. Our work therefore shows that internally-generated changes of vegetation in the northern lands, driven by AMV, are potentially as large as those caused by external CO<sub>2</sub> forcing. We thus argue that the observed pattern of greening/browning in the northern high latitudes could originate from the combined effect of rising CO<sub>2</sub> as well as the AMV.</p>


2021 ◽  
Author(s):  
Sophie Stolzenberger ◽  
Roelof Rietbroek ◽  
Claudia Wekerle ◽  
Bernd Uebbing ◽  
Jürgen Kusche

<p>The impact of Greenland freshwater on oceanic variables in the North Atlantic has been controversially discussed in the past. Within the framework of the German research project GROCE (Greenland Ice Sheet Ocean Interaction), we present a comprehensive study using ocean modelling results including and excluding the Greenland freshwater flux. The aim of this study is whether signatures of Greenland ice sheet melting found in ocean model simulations are visible in the observations. Therefore, we estimate changes in temperature, salinity, steric heights and sea level anomalies since the 1990s. The observational database includes altimetric and gravimetric satellite data as well as Argo floats. We will discuss similarities/differences between model simulations and observations for smaller regions around Greenland in the North Atlantic. As these experiments are available for two different horizontal resolutions, we will furthermore be able to assess the effects of an increased model resolution.</p>


2016 ◽  
Vol 12 (9) ◽  
pp. 1919-1932 ◽  
Author(s):  
Emma J. Stone ◽  
Emilie Capron ◽  
Daniel J. Lunt ◽  
Antony J. Payne ◽  
Joy S. Singarayer ◽  
...  

Abstract. Recent data compilations of the early Last Interglacial period have indicated a bipolar temperature response at 130 ka, with colder-than-present temperatures in the North Atlantic and warmer-than-present temperatures in the Southern Ocean and over Antarctica. However, climate model simulations of this period have been unable to reproduce this response, when only orbital and greenhouse gas forcings are considered in a climate model framework. Using a full-complexity general circulation model we perform climate model simulations representative of 130 ka conditions which include a magnitude of freshwater forcing derived from data at this time. We show that this meltwater from the remnant Northern Hemisphere ice sheets during the glacial–interglacial transition produces a modelled climate response similar to the observed colder-than-present temperatures in the North Atlantic at 130 ka and also results in warmer-than-present temperatures in the Southern Ocean via the bipolar seesaw mechanism. Further simulations in which the West Antarctic Ice Sheet is also removed lead to warming in East Antarctica and the Southern Ocean but do not appreciably improve the model–data comparison. This integrated model–data approach provides evidence that Northern Hemisphere freshwater forcing is an important player in the evolution of early Last Interglacial climate.


2016 ◽  
Vol 7 (4) ◽  
pp. 877-892 ◽  
Author(s):  
Stefan Muthers ◽  
Christoph C. Raible ◽  
Eugene Rozanov ◽  
Thomas F. Stocker

Abstract. The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic Meridional Overturning Circulation (AMOC) is assessed in an ensemble of atmosphere–ocean–chemistry–climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. In both experiments the AMOC is intensified in the course of the solar radiation reduction, which is attributed to the thermal effect of the solar forcing: reduced sea surface temperatures and enhanced sea ice formation increase the density of the upper ocean in the North Atlantic and intensify the deepwater formation. Furthermore, a second, dynamical effect on the AMOC is identified driven by the stratospheric cooling in response to the reduced solar forcing. The cooling is strongest in the tropics and leads to a weakening of the northern polar vortex. By stratosphere–troposphere interactions, the stratospheric circulation anomalies induce a negative phase of the Arctic Oscillation in the troposphere which is found to weaken the AMOC through wind stress and heat flux anomalies in the North Atlantic. The dynamic mechanism is present in both ensemble experiments. In the experiment with interactive chemistry, however, it is strongly amplified by stratospheric ozone changes. In the coupled system, both effects counteract and weaken the response of the AMOC to the solar forcing reduction. Neglecting chemistry–climate interactions in model simulations may therefore lead to an overestimation of the AMOC response to solar forcing.


2018 ◽  
Vol 115 (42) ◽  
pp. 10606-10611 ◽  
Author(s):  
Xingchen Tony Wang ◽  
Anne L. Cohen ◽  
Victoria Luu ◽  
Haojia Ren ◽  
Zhan Su ◽  
...  

Human alteration of the global nitrogen cycle intensified over the 1900s. Model simulations suggest that large swaths of the open ocean, including the North Atlantic and the western Pacific, have already been affected by anthropogenic nitrogen through atmospheric transport and deposition. Here we report an ∼130-year-long record of the15N/14N of skeleton-bound organic matter in a coral from the outer reef of Bermuda, which provides a test of the hypothesis that anthropogenic atmospheric nitrogen has significantly augmented the nitrogen supply to the open North Atlantic surface ocean. The Bermuda15N/14N record does not show a long-term decline in the Anthropocene of the amplitude predicted by model simulations or observed in a western Pacific coral15N/14N record. Rather, the decadal variations in the Bermuda15N/14N record appear to be driven by the North Atlantic Oscillation, most likely through changes in the formation rate of Subtropical Mode Water. Given that anthropogenic nitrogen emissions have been decreasing in North America since the 1990s, this study suggests that in the coming decades, the open North Atlantic will remain minimally affected by anthropogenic nitrogen deposition.


2019 ◽  
Author(s):  
Tine Nilsen ◽  
Dmitry V. Divine ◽  
Annika Hofgaard ◽  
Andreas Born ◽  
Johann Jungclaus ◽  
...  

Abstract. The circulation strength of the North Atlantic subpolar gyre varies on a range of timescales, it regulates the northwards oceanic heat transport and influences weather and climate over Scandinavia. We test the hypothesis that persistent atmospheric circulation anomalies favorable for extensive forest fire activity in the northern Scandinavian boreal region are predominantly associated with weaker subpolar gyre strength on subannual timescales. We included both winter and summer drought as important precursors for forest fire occurrence in the boreal region. Three ensemble members of climate model simulations covering the time period 850–2005 AD are considered. Years of widespread and severe drought in northern Scandinavia are identified using the monthly drought code as a summer-drought indicator, and winter drought is identified as the 5th percentile of coldest and driest winters. The statistical significance of anomalous ocean- and atmospheric circulation is tested for these years, both during and prior to the main fire season. Analysis of the ensemble of three simulations did not yield a generalized result, hence the hypothesis cannot be confirmed for subannual timescales. For the three simulations we find respectively that the fire-prone years are associated with subpolar gyre circulation that is on average stronger, weaker or insignificantly changed compared with the mean state. The 5th percentile of most extreme dry and cold winters has a strong relation to the winter North Atlantic oscillation (NAO), but not with the gyre circulation state. We find a number of extremely cold/dry winters occurring during the Little Ice Age (LIA, 16th–19th centuries AD), and infer that winter drought may have played a significant role in promoting forest fire activity at this time. Our results highlight the importance of resolving the past fire seasonality in the northern Scandinavian domain, and developing compound drought indicators for winter and spring.


Sign in / Sign up

Export Citation Format

Share Document