scholarly journals Imaging of colloidal deposits in granular porous media by X-ray difference micro-tomography

2007 ◽  
Vol 34 (18) ◽  
Author(s):  
Jean-François Gaillard ◽  
Cheng Chen ◽  
Susa H. Stonedahl ◽  
Boris L. T. Lau ◽  
Denis T. Keane ◽  
...  
2011 ◽  
Vol 356-360 ◽  
pp. 2362-2366
Author(s):  
Dao Ping Peng ◽  
Tao Huang ◽  
Chun Xiao Meng

In order to investigate the change of internal structure of porous media caused by arsenic deposition, X-ray difference micro-tomography was used to characterize the distribution of arsenic aggregates within porous media by scanning a series of arsenic samples prepared in the laboratory and arsenic-rich fluvial sediments from the Río Loa in Chile. After image processing, background noise in the tomograms was reduced and arsenic information was enhanced. Then the processed images were used to generate 3D spatial distribution datasets of arsenic in the media. Tools like Avizo6 and Blob3D were used to reconstruct and visualize the 3D datasets. 3D visualization showed that arsenic accumulated in the pore space and grain surface; arsenic aggregates of different sizes had distinctly different morphologies, which small aggregates tended to be spherical while big aggregates were relatively flat. These results show that difference micro-tomography can be used to observe the pre- and post-deposition structure of porous media, without any destruction to the samples.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Tannaz Pak ◽  
Nathaly Lopes Archilha ◽  
Iara Frangiotti Mantovani ◽  
Anderson Camargo Moreira ◽  
Ian B. Butler

Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


2018 ◽  
Vol 2 (21) ◽  
pp. 85-101
Author(s):  
Olga Shtyka ◽  
Łukasz Przybysz ◽  
Mariola Błaszczyk ◽  
Jerzy P. Sęk

The research focuses on the issues concerning a process of multiphase liquids transport in granular porous media driven by the capillary pressure. The current publication is meant to introduce the results of experimental research conducted to evaluate the kinetics of the imbibition and emulsions behavior inside the porous structures. Moreover, the influence of the dispersed phase concentration and granular media structure on the mentioned process was considered. The medium imbibition with emulsifier-stabilized emulsions composed of oil as the dispersed phase in concentrations of 10 vol%, 30 vol%, and 50 vol%, was investigated. The porous media consisted of oleophilic/hydrophilic beads with a fraction of 200–300 and 600–800 μm. The experimental results provided that the emulsions imbibition in such media depended stronger on its structure compare to single-phase liquids. The increase of the dispersed phase concentration caused an insignificant mass decreasing of the imbibed emulsions and height of its penetration in a sorptive medium. The concentrations of the imbibed dispersions exceeded their initial values, but reduced with permeants front raise in the granular structures that can be defined as the influential factor for wicking process kinetics.


2007 ◽  
Vol 25 (4) ◽  
pp. 558-559
Author(s):  
M. Gombia ◽  
V. Bortolotti ◽  
P. Fantazzini ◽  
M. Camaiti ◽  
T. Schillaci ◽  
...  

2021 ◽  
Vol 33 (7) ◽  
pp. 076610
Author(s):  
Chunwei Zhang ◽  
Yun She ◽  
Yingxue Hu ◽  
Zijing Li ◽  
Weicen Wang ◽  
...  

Author(s):  
Wojciech Sobieski

AbstractThe paper describes the so-called Waterfall Algorithm, which may be used to calculate a set of parameters characterising the spatial structure of granular porous media, such as shift ratio, collision density ratio, consolidation ratio, path length and minimum tortuosity. The study is performed for 1800 different two-dimensional random pore structures. In each geometry, 100 individual paths are calculated. The impact of porosity and the particle size on the above-mentioned parameters is investigated. It was stated in the paper, that the minimum tortuosity calculated by the Waterfall Algorithm cannot be used directly as a representative tortuosity of pore channels in the Kozeny or the Carman meaning. However, it may be used indirect by making the assumption that a unambiguous relationship between the representative tortuosity and the minimum tortuosity exists. It was also stated, that the new parameters defined in the present study are sensitive on the porosity and the particle size and may be therefore applied as indicators of the geometry structure of granular media. The Waterfall Algorithm is compared with other methods of determining the tortuosity: A-Star Algorithm, Path Searching Algorithm, Random Walk technique, Path Tracking Method and the methodology of calculating the hydraulic tortuosity based on the Lattice Boltzmann Method. A very short calculation time is the main advantage of the Waterfall Algorithm, what meant, that it may be applied in a very large granular porous media.


Sign in / Sign up

Export Citation Format

Share Document