scholarly journals Reconstructing drought variability for Mongolia based on a large-scale tree ring network: 1520–1993

2010 ◽  
Vol 115 (D22) ◽  
Author(s):  
N. Davi ◽  
G. Jacoby ◽  
K. Fang ◽  
J. Li ◽  
R. D'Arrigo ◽  
...  
2020 ◽  
Author(s):  
Justin T. Maxwell ◽  
Grant L. Harley ◽  
Trevis J. Matheus ◽  
Brandon M. Strange ◽  
Kayla Van Aken ◽  
...  

Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 1900 in the United States; US) is largely dependent on tree-ring-based reconstructions. Large-scale soil moisture reconstructions from a network of tree-ring chronologies have greatly improved our understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of both drought and pluvial (wet) events. However, certain regions within these large-scale reconstructions in the US have a sparse network of tree-ring chronologies. Further, several chronologies were collected in the 1980s and 1990s, thus our understanding of the sensitivity of radial growth to soil moisture in the US is based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, rapid global change. In this study, we expanded the tree-ring network of the Ohio River Valley in the US, a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how increasing the density of the tree-ring network influences the representation of reconstructing the Palmer Meteorological Drought Index (PMDI). Further, we tested how the sampling date influenced the reconstruction models by creating reconstructions that ended in the year 1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that increasing the density of the tree-ring network resulted in reconstructed values that better matched the spatial variability of instrumentally recorded droughts and to a lesser extent, pluvials. By sampling tree in 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the southern portion of our region where severe drought conditions have been absent over recent decades. We emphasize the need of building a high-density tree-ring network to better represent the spatial variability of past droughts and pluvials. Further, chronologies on the International Tree-Ring Data Bank need updating regularly to better understand how the sensitivity of tree rings to climate may vary through time.


Radiocarbon ◽  
2014 ◽  
Vol 56 (04) ◽  
pp. S61-S68
Author(s):  
Ramzi Touchan ◽  
David M. Meko ◽  
Kevin J. Anchukaitis

Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.


2020 ◽  
Vol 16 (5) ◽  
pp. 1901-1916
Author(s):  
Justin T. Maxwell ◽  
Grant L. Harley ◽  
Trevis J. Matheus ◽  
Brandon M. Strange ◽  
Kayla Van Aken ◽  
...  

Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 1900 CE in the United States) is largely dependent on tree-ring-based reconstructions. Large-scale soil moisture reconstructions from a network of tree-ring chronologies have greatly improved our understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of both drought and pluvial (wet) events. However, certain regions within these large-scale network reconstructions in the US are modeled by few tree-ring chronologies. Further, many of the chronologies currently publicly available on the International Tree-Ring Data Bank (ITRDB) were collected in the 1980s and 1990s, and thus our understanding of the sensitivity of radial growth to soil moisture in the US is based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, rapid global change. In this study, we expanded the tree-ring network of the Ohio River valley in the US, a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how increasing the density of the tree-ring network influences the representation of reconstructing the Palmer Meteorological Drought Index (PMDI). Further, we tested how the sampling date and therefore the calibration period influenced the reconstruction models by creating reconstructions that ended in the year 1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that increasing the density of the tree-ring network resulted in reconstructed values that better matched the spatial variability of instrumentally recorded droughts and, to a lesser extent, pluvials. By extending the calibration period to 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the southern portion of our region where severe drought conditions have been absent over recent decades. We emphasize the need of building a high-density tree-ring network to better represent the spatial variability of past droughts and pluvials. Further, chronologies on the ITRDB need updating regularly to better understand how the sensitivity of tree rings to climate may vary through time.


Radiocarbon ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. S61-S68 ◽  
Author(s):  
Ramzi Touchan ◽  
David M. Meko ◽  
Kevin J. Anchukaitis

Dendroclimatology in the Eastern Mediterranean (EM) region has made important contributions to the understanding of climate variability on timescales of decades to centuries. These contributions, beginning in the mid-20th century, have value for resource management, archaeology, and climatology. A gradually expanding tree-ring network developed by the first author over the past 15 years has been the framework for some of the most important recent advances in EM dendroclimatology. The network, now consisting of 79 sites, has been widely applied in large-scale climatic reconstruction and in helping to identify drivers of climatic variation on regional to global spatial scales. This article reviews EM dendroclimatology and highlights contributions on the national and international scale.


2011 ◽  
Vol 24 (13) ◽  
pp. 3457-3468 ◽  
Author(s):  
Keyan Fang ◽  
Xiaohua Gou ◽  
Fahu Chen ◽  
Edward Cook ◽  
Jinbao Li ◽  
...  

Abstract A preliminary study of a point-by-point spatial precipitation reconstruction for northwestern (NW) China is explored, based on a tree-ring network of 132 chronologies. Precipitation variations during the past ~200–400 yr (the common reconstruction period is from 1802 to 1990) are reconstructed for 26 stations in NW China from a nationwide 160-station dataset. The authors introduce a “search spatial correlation contour” method to locate candidate tree-ring predictors for the reconstruction data of a given climate station. Calibration and verification results indicate that most precipitation reconstruction models are acceptable, except for a few reconstructions (stations Hetian, Hami, Jiuquan, and Wuwei) with degraded quality. Additionally, the authors compare four spatial precipitation factors in the instrumental records and reconstructions derived from a rotated principal component analysis (RPCA). The northern and southern Xinjiang factors from the instrumental and reconstructed data agree well with each other. However, differences in spatial patterns between the instrumentation and reconstruction data are also found for the other two factors, which probably result from the relatively poor quality of a few stations. Major drought events documented in previous studies—for example, from the 1920s through the 1930s for the eastern part of NW China—are reconstructed in this study.


2007 ◽  
Vol 34 (11) ◽  
pp. 1873-1892 ◽  
Author(s):  
Alfredo Di Filippo ◽  
Franco Biondi ◽  
Katarina Čufar ◽  
Martín de Luis ◽  
Michael Grabner ◽  
...  

1990 ◽  
Vol 20 (10) ◽  
pp. 1559-1569 ◽  
Author(s):  
Christopher H. Baisan ◽  
Thomas W. Swetnam

Modern fire records and fire-scarred remnant material collected from logs, snags, and stumps were used to reconstruct and analyze fire history in the mixed-conifer and pine forest above 2300 m within the Rincon Mountain Wilderness of Saguaro National Monument, Arizona, United States. Cross-dating of the remnant material allowed dating of fire events to the calendar year. Estimates of seasonal occurrence were compiled for larger fires. It was determined that the fire regime was dominated by large scale (> 200 ha), early-season (May–July) surface fires. The mean fire interval over the Mica Mountain study area for the period 1657–1893 was 6.1 years with a range of 1–13 years for larger fires. The mean fire interval for the mixed-conifer forest type (1748–1886) was 9.9 years with a range of 3–19 years. Thirty-five major fire years between 1700 and 1900 were compared with a tree-ring reconstruction of the Palmer drought severity index (PDSI). Mean July PDSI for 2 years prior to fires was higher (wetter) than average, while mean fire year PDSI was near average. This 490-year record of fire occurrence demonstrates the value of high-resolution (annual and seasonal) tree-ring analyses for documenting and interpreting temporal and spatial patterns of past fire regimes.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 889
Author(s):  
Zeynab Foroozan ◽  
Jussi Grießinger ◽  
Kambiz Pourtahmasi ◽  
Achim Bräuning

In semi-arid regions of the world, knowledge about the long-term hydroclimate variability is essential to analyze and evaluate the impact of current climate change on ecosystems. We present the first tree-ring δ18O based hydroclimatic reconstruction for northern semi-arid Iran spanning the period 1515–2015. A highly significant correlation between tree-ring δ18O variations of juniper trees and spring (April–June) precipitation reveals a major influence of spring water availability during the early growing season. The driest period of the past 501 years occurred in the 16th century while the 18th century was the wettest, during which the overall highest frequency of wet year events occurred. A gradual decline in spring precipitation is evident from the beginning of the 19th century, pointing to even drier climate conditions. The analysis of dry/wet events indicates that the frequency of years with relatively dry spring increased over the last three centuries, while the number of wet events decreased. Our findings are in accordance with historical Persian disaster records (e.g., the severe droughts of 1870–1872, 1917–1919; severe flooding of 1867, the 1930s, and 1950). Correlation analyses between the reconstruction and different atmospheric circulation indices revealed no significant influence of large-scale drivers on spring precipitation in northern Iran.


Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 505 ◽  
Author(s):  
Feng Chen ◽  
Tongwen Zhang ◽  
Andrea Seim ◽  
Shulong Yu ◽  
Ruibo Zhang ◽  
...  

Coniferous forests cover the mountains in many parts of Central Asia and provide large potentials for dendroclimatic studies of past climate variability. However, to date, only a few tree-ring based climate reconstructions exist from this region. Here, we present a regional tree-ring chronology from the moisture-sensitive Zeravshan juniper (Juniperus seravschanica Kom.) from the Kuramin Range (Tajikistan) in western Central Asia, which is used to reveal past summer drought variability from 1650 to 2015 Common Era (CE). The chronology accounts for 40.5% of the variance of the June–July self-calibrating Palmer Drought Severity Index (scPDSI) during the instrumental period (1901 to 2012). Seven dry periods, including 1659–1696, 1705–1722, 1731–1741, 1758–1790, 1800–1842, 1860–1875, and 1931–1987, and five wet periods, including 1742–1752, 1843–1859, 1876–1913, 1921–1930, and 1988–2015, were identified. Good agreements between drought records from western and eastern Central Asia suggest that the PDSI records retain common drought signals and capture the regional dry/wet periods of Central Asia. Moreover, the spectral analysis indicates the existence of centennial (128 years), decadal (24.3 and 11.4 years), and interannual (8.0, 3.6, 2.9, and 2.0 years) cycles, which may be linked with climate forces, such as solar activity and El Niño-Southern Oscillation (ENSO). The analysis between the scPDSI reconstruction and large-scale atmospheric circulations during the reconstructed extreme dry and wet years can provide information about the linkages of extremes in our scPDSI record with the large-scale ocean–atmosphere–land circulation systems.


Sign in / Sign up

Export Citation Format

Share Document