scholarly journals Soil Saturation Dictates Africa’s Flood Severity

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Ellis Avallone

The most complete hydrological data set for the African continent reveals a surprise: Soil moisture, not heavy precipitation, best explains the timing of Africa’s most severe floods.

2017 ◽  
Vol 10 (20) ◽  
Author(s):  
Kishan Singh Rawat ◽  
Vinay Kumar Sehgal ◽  
Sanatan Pradhan ◽  
Shibendu S. Ray
Keyword(s):  

2008 ◽  
Vol 88 (5) ◽  
pp. 761-774 ◽  
Author(s):  
J. A. P. Pollacco

Hydrological models require the determination of fitting parameters that are tedious and time consuming to acquire. A rapid alternative method of estimating the fitting parameters is to use pedotransfer functions. This paper proposes a reliable method to estimate soil moisture at -33 and -1500 kPa from soil texture and bulk density. This method reduces the saturated moisture content by multiplying it with two non-linear functions depending on sand and clay contents. The novel pedotransfer function has no restrictions on the range of the texture predictors and gives reasonable predictions for soils with bulk density that varies from 0.25 to 2.16 g cm-3. These pedotransfer functions require only five parameters for each pressure head. It is generally accepted that the introduction of organic matter as a predictor improves the outcomes; however it was found by using a porosity based pedotransfer model, using organic matter as a predictor only modestly improves the accuracy. The model was developed employing 18 559 samples from the IGBP-DIS soil data set for pedotransfer function development (Data and Information System of the International Geosphere Biosphere Programme) database that embodies all major soils across the United States of America. The function is reliable and performs well for a wide range of soils occurring in very dry to very wet climates. Climatical grouping of the IGBP-DIS soils was proposed (aquic, tropical, cryic, aridic), but the results show that only tropical soils require specific grouping. Among many other different non-climatical soil groups tested, only humic and vitric soils were found to require specific grouping. The reliability of the pedotransfer function was further demonstrated with an independent database from Northern Italy having heterogeneous soils, and was found to be comparable or better than the accuracy of other pedotransfer functions found in the literature. Key words: Pedotransfer functions, soil moisture, soil texture, bulk density, organic matter, grouping


2012 ◽  
Vol 48 (7) ◽  
Author(s):  
A. B. Smith ◽  
J. P. Walker ◽  
A. W. Western ◽  
R. I. Young ◽  
K. M. Ellett ◽  
...  

2005 ◽  
Vol 25 (13) ◽  
pp. 1697-1714 ◽  
Author(s):  
A. A Berg ◽  
J. S. Famiglietti ◽  
M. Rodell ◽  
R. H. Reichle ◽  
U. Jambor ◽  
...  

2021 ◽  
Author(s):  
Eva van der Kooij ◽  
Marc Schleiss ◽  
Riccardo Taormina ◽  
Francesco Fioranelli ◽  
Dorien Lugt ◽  
...  

<p>Accurate short-term forecasts, also known as nowcasts, of heavy precipitation are desirable for creating early warning systems for extreme weather and its consequences, e.g. urban flooding. In this research, we explore the use of machine learning for short-term prediction of heavy rainfall showers in the Netherlands.</p><p>We assess the performance of a recurrent, convolutional neural network (TrajGRU) with lead times of 0 to 2 hours. The network is trained on a 13-year archive of radar images with 5-min temporal and 1-km spatial resolution from the precipitation radars of the Royal Netherlands Meteorological Institute (KNMI). We aim to train the model to predict the formation and dissipation of dynamic, heavy, localized rain events, a task for which traditional Lagrangian nowcasting methods still come up short.</p><p>We report on different ways to optimize predictive performance for heavy rainfall intensities through several experiments. The large dataset available provides many possible configurations for training. To focus on heavy rainfall intensities, we use different subsets of this dataset through using different conditions for event selection and varying the ratio of light and heavy precipitation events present in the training data set and change the loss function used to train the model.</p><p>To assess the performance of the model, we compare our method to current state-of-the-art Lagrangian nowcasting system from the pySTEPS library, like S-PROG, a deterministic approximation of an ensemble mean forecast. The results of the experiments are used to discuss the pros and cons of machine-learning based methods for precipitation nowcasting and possible ways to further increase performance.</p>


2018 ◽  
Vol 22 (6) ◽  
pp. 3229-3243 ◽  
Author(s):  
Maoya Bassiouni ◽  
Chad W. Higgins ◽  
Christopher J. Still ◽  
Stephen P. Good

Abstract. Vegetation controls on soil moisture dynamics are challenging to measure and translate into scale- and site-specific ecohydrological parameters for simple soil water balance models. We hypothesize that empirical probability density functions (pdfs) of relative soil moisture or soil saturation encode sufficient information to determine these ecohydrological parameters. Further, these parameters can be estimated through inverse modeling of the analytical equation for soil saturation pdfs, derived from the commonly used stochastic soil water balance framework. We developed a generalizable Bayesian inference framework to estimate ecohydrological parameters consistent with empirical soil saturation pdfs derived from observations at point, footprint, and satellite scales. We applied the inference method to four sites with different land cover and climate assuming (i) an annual rainfall pattern and (ii) a wet season rainfall pattern with a dry season of negligible rainfall. The Nash–Sutcliffe efficiencies of the analytical model's fit to soil observations ranged from 0.89 to 0.99. The coefficient of variation of posterior parameter distributions ranged from < 1 to 15 %. The parameter identifiability was not significantly improved in the more complex seasonal model; however, small differences in parameter values indicate that the annual model may have absorbed dry season dynamics. Parameter estimates were most constrained for scales and locations at which soil water dynamics are more sensitive to the fitted ecohydrological parameters of interest. In these cases, model inversion converged more slowly but ultimately provided better goodness of fit and lower uncertainty. Results were robust using as few as 100 daily observations randomly sampled from the full records, demonstrating the advantage of analyzing soil saturation pdfs instead of time series to estimate ecohydrological parameters from sparse records. Our work combines modeling and empirical approaches in ecohydrology and provides a simple framework to obtain scale- and site-specific analytical descriptions of soil moisture dynamics consistent with soil moisture observations.


2013 ◽  
Vol 17 (7) ◽  
pp. 2781-2796 ◽  
Author(s):  
S. Shukla ◽  
J. Sheffield ◽  
E. F. Wood ◽  
D. P. Lettenmaier

Abstract. Global seasonal hydrologic prediction is crucial to mitigating the impacts of droughts and floods, especially in the developing world. Hydrologic predictability at seasonal lead times (i.e., 1–6 months) comes from knowledge of initial hydrologic conditions (IHCs) and seasonal climate forecast skill (FS). In this study we quantify the contributions of two primary components of IHCs – soil moisture and snow water content – and FS (of precipitation and temperature) to seasonal hydrologic predictability globally on a relative basis throughout the year. We do so by conducting two model-based experiments using the variable infiltration capacity (VIC) macroscale hydrology model, one based on ensemble streamflow prediction (ESP) and another based on Reverse-ESP (Rev-ESP), both for a 47 yr re-forecast period (1961–2007). We compare cumulative runoff (CR), soil moisture (SM) and snow water equivalent (SWE) forecasts from each experiment with a VIC model-based reference data set (generated using observed atmospheric forcings) and estimate the ratio of root mean square error (RMSE) of both experiments for each forecast initialization date and lead time, to determine the relative contribution of IHCs and FS to the seasonal hydrologic predictability. We find that in general, the contributions of IHCs to seasonal hydrologic predictability is highest in the arid and snow-dominated climate (high latitude) regions of the Northern Hemisphere during forecast periods starting on 1 January and 1 October. In mid-latitude regions, such as the Western US, the influence of IHCs is greatest during the forecast period starting on 1 April. In the arid and warm temperate dry winter regions of the Southern Hemisphere, the IHCs dominate during forecast periods starting on 1 April and 1 July. In equatorial humid and monsoonal climate regions, the contribution of FS is generally higher than IHCs through most of the year. Based on our findings, we argue that despite the limited FS (mainly for precipitation) better estimates of the IHCs could lead to improvement in the current level of seasonal hydrologic forecast skill over many regions of the globe at least during some parts of the year.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1564 ◽  
Author(s):  
Melanie Oertel ◽  
Francisco Meza ◽  
Jorge Gironás ◽  
Christopher A. Scott ◽  
Facundo Rojas ◽  
...  

Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries.


2010 ◽  
Vol 14 (4) ◽  
pp. 613-626 ◽  
Author(s):  
S. Sinclair ◽  
G. G. S. Pegram

Abstract. In this paper we compare two independent soil moisture estimates over South Africa. The first estimate is a Soil Saturation Index (SSI) provided by automated real-time computations of the TOPKAPI hydrological model, adapted to run as a collection of independent 1 km cells with centres on a grid with a spatial resolution of 0.125°, at 3 h intervals. The second set of estimates is the remotely sensed ASCAT Surface Soil Moisture product, temporally filtered to yield a Soil Wetness Index (SWI). For the TOPKAPI cells, the rainfall forcing used is the TRMM 3B42RT product, while the evapotranspiration forcing is based on a modification of the FAO56 reference crop evapotranspiration (ET0). ET0 is computed using forecast fields of meteorological variables from the Unified Model (UM) runs done by the South African Weather Service (SAWS); the UM forecast fields were used, because reanalysis is not done by SAWS. To validate these ET0 estimates we compare them with those computed using observed meteorological data at a network of weather stations; they were found to be unbiased with acceptable scatter. Using the rainfall and evapotranspiration forcing data, the percentage saturation of the TOPKAPI soil store is computed as a Soil Saturation Index (SSI), for each of 6984 unconnected uncalibrated TOPKAPI cells at 3 h time-steps. These SSI estimates are then compared with the SWI estimates obtained from ASCAT. The comparisons indicate a good correspondence in the dynamic behaviour of SWI and SSI for a significant proportion of South Africa.


Sign in / Sign up

Export Citation Format

Share Document