scholarly journals ENSO‐based predictability of a regional severe thunderstorm index

Author(s):  
Michael K. Tippett ◽  
Chiara Lepore
Keyword(s):  
2014 ◽  
Vol 27 (10) ◽  
pp. 3848-3868 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorm environments in Australia was explored using two global climate models: Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6), and the Cubic-Conformal Atmospheric Model (CCAM). These models have previously been evaluated and found to be capable of reproducing a useful climatology for the twentieth-century period (1980–2000). Analyzing the changes between the historical period and high warming climate scenarios for the period 2079–99 has allowed estimation of the potential convective future for the continent. Based on these simulations, significant increases to the frequency of severe thunderstorm environments will likely occur for northern and eastern Australia in a warmed climate. This change is a response to increasing convective available potential energy from higher continental moisture, particularly in proximity to warm sea surface temperatures. Despite decreases to the frequency of environments with high vertical wind shear, it appears unlikely that this will offset increases to thermodynamic energy. The change is most pronounced during the peak of the convective season, increasing its length and the frequency of severe thunderstorm environments therein, particularly over the eastern parts of the continent. The implications of this potential increase are significant, with the overall frequency of potential severe thunderstorm days per year likely to rise over the major population centers of the east coast by 14% for Brisbane, 22% for Melbourne, and 30% for Sydney. The limitations of this approach are then discussed in the context of ways to increase the confidence of predictions of future severe convection.


2010 ◽  
Vol 27 (1) ◽  
pp. 3-22 ◽  
Author(s):  
Patrick N. Gatlin ◽  
Steven J. Goodman

Abstract An algorithm that provides an early indication of impending severe weather from observed trends in thunderstorm total lightning flash rates has been developed. The algorithm framework has been tested on 20 thunderstorms, including 1 nonsevere storm, which occurred over the course of six separate days during the spring months of 2002 and 2003. The identified surges in lightning rate (or jumps) are compared against 110 documented severe weather events produced by these thunderstorms as they moved across portions of northern Alabama and southern Tennessee. Lightning jumps precede 90% of these severe weather events, with as much as a 27-min advance notification of impending severe weather on the ground. However, 37% of lightning jumps are not followed by severe weather reports. Various configurations of the algorithm are tested, and the highest critical success index attained is 0.49. Results suggest that this lightning jump algorithm may be a useful operational diagnostic tool for severe thunderstorm potential.


Author(s):  
Michael M. French

Abstract The Weather Surveillance Radar - 1988 Doppler (WSR-88D) network has undergone several improvements in the last decade with the upgrade to dual-polarization capabilities and the ability for forecasters to re-scan the lowest levels of the atmosphere more frequently through the use of Supplemental Adaptive Intra-volume Scanning (SAILS). SAILS reduces the revisit period for scanning the lowest 1 km of the atmosphere but comes at the cost of a longer delay between scans at higher altitudes. This study quantifies how often radar Volume Coverage Patterns (VCPs) and all available SAILS options are used during the issuance of 148,882 severe thunderstorm and 18,263 tornado warnings, and near 10,474 tornado, 58,934 hail, and 127,575 wind reports in the dual-polarization radar era. A large majority of warnings and storm reports were measured with a VCP providing denser low-level sampling coverage. More frequent low-level updates were employed near tornado warnings and reports compared to severe thunderstorm warnings and hail or wind hazards. Warnings issued near a radar providing three extra low-level scans (SAILSx3) were more likely to be verified by a hazard with a positive lead time than warnings with fewer low-level scans. However, extra low-level scans were more frequently used in environments supporting organized convection as shown using watches issued by the Storm Prediction Center. Recently, the number of mid-level radar elevation scans is declining per hour, which can adversely affect the tracking of convective polarimetric signatures, like ZDR columns, which were found above the 0.5° elevation angle in over 99% of cases examined.


2019 ◽  
Vol 13 (1) ◽  
pp. 115-128
Author(s):  
Ionac Nicoleta ◽  
Tudor Ion ◽  
Grigore Elena ◽  
Constantin Dana ◽  
Uriţescu Bogdan ◽  
...  

Abstract The increasing frequency and intensity of climate and weather extremes due to ongoing climate changes can cause major property and infrastructure damage. Mainly representing unforeseen and unavoidable hazards, some environmental and business laws broadly assimilate them as force majeure situations, excepting parties affected by their impact from prior commitments. The present study, debating on the way law courts should broadly address the force majeure clause when objective and accurate evidence is being provided, describes the terms of a legal dispute between the owners of two neighboring buildings which have seriously been damaged by a severe thunderstorm developing over the Bucharest-Otopeni town area, on the 22nd July 2014. Consistent meteorological evidence (weather reports and forecasts, aerological diagrams, radar and satellite images, air-pressure distribution maps, synoptic messages etc.) have been presented to the law court to document, in an unbiased manner, on the extraordinary, external, unforeseen and unavoidable weather event representing the cause of a civil legal dispute. The extent to which the law court may take all these into consideration under the provisions of the force majeure clause is still to be explored.


2007 ◽  
Vol 10 (03) ◽  
pp. 413-422 ◽  
Author(s):  
SUTAPA CHAUDHURI

Severe thunderstorms are a manifestation of deep convection. Conditional instability is known to be the mechanism by which thunderstorms are formed. The energy that drives conditional instability is convective available potential energy (CAPE), which is computed with radio sonde data at each pressure level. The purpose of the present paper is to identify the pattern or shape of CAPE required for the genesis of severe thunderstorms over Kolkata (22°32′N, 88°20′E) confined within the northeastern part (20°N to 24°N latitude, 85°E to 93°E longitude) of India. The method of chaotic graph theory is adopted for this purpose. Chaotic graphs of pressure levels and CAPE are formed for thunderstorm and non-thunderstorm days. Ranks of the adjacency matrices constituted with the union of chaotic graphs of pressure levels and CAPE are computed for thunderstorm and non-thunderstorm days. The results reveal that the rank of the adjacency matrix is maximum for non-thunderstorm days and a column with all zeros occurs very quickly on severe thunderstorms days. This indicates that CAPE loses connectivity with pressure levels very early on severe thunderstorm days, showing that for the genesis of severe thunderstorms over Kolkata short, and therefore broad, CAPE is preferred.


2017 ◽  
Vol 55 (2) ◽  
pp. 1039-1052 ◽  
Author(s):  
Yu Zhang ◽  
Stephen Wistar ◽  
Jia Li ◽  
Michael A. Steinberg ◽  
James Z. Wang

2019 ◽  
Vol 32 (6) ◽  
pp. 1813-1837 ◽  
Author(s):  
Mateusz Taszarek ◽  
John Allen ◽  
Tomáš Púčik ◽  
Pieter Groenemeijer ◽  
Bartosz Czernecki ◽  
...  

Abstract The climatology of (severe) thunderstorm days is investigated on a pan-European scale for the period of 1979–2017. For this purpose, sounding measurements, surface observations, lightning data from ZEUS (a European-wide lightning detection system) and European Cooperation for Lightning Detection (EUCLID), ERA-Interim, and severe weather reports are compared and their respective strengths and weaknesses are discussed. The research focuses on the annual cycles in thunderstorm activity and their spatial variability. According to all datasets thunderstorms are the most frequent in the central Mediterranean, the Alps, the Balkan Peninsula, and the Carpathians. Proxies for severe thunderstorm environments show similar patterns, but severe weather reports instead have their highest frequency over central Europe. Annual peak thunderstorm activity is in July and August over northern, eastern, and central Europe, contrasting with peaks in May and June over western and southeastern Europe. The Mediterranean, driven by the warm waters, has predominant activity in the fall (western part) and winter (eastern part) while the nearby Iberian Peninsula and eastern Turkey have peaks in April and May. Trend analysis of the mean annual number of days with thunderstorms since 1979 indicates an increase over the Alps and central, southeastern, and eastern Europe with a decrease over the southwest. Multiannual changes refer also to changes in the pattern of the annual cycle. Comparison of different data sources revealed that although lightning data provide the most objective sampling of thunderstorm activity, short operating periods and areas devoid of sensors limit their utility. In contrast, reanalysis complements these disadvantages to provide a longer climatology, but is prone to errors related to modeling thunderstorm occurrence and the numerical simulation itself.


2020 ◽  
Vol 12 (18) ◽  
pp. 2930 ◽  
Author(s):  
Anna del Moral ◽  
Tammy M. Weckwerth ◽  
Tomeu Rigo ◽  
Michael M. Bell ◽  
María Carmen Llasat

Convective activity in Catalonia (northeastern Spain) mainly occurs during summer and autumn, with severe weather occurring 33 days per year on average. In some cases, the storms have unexpected propagation characteristics, likely due to a combination of the complex topography and the thunderstorms’ propagation mechanisms. Partly due to the local nature of the events, numerical weather prediction models are not able to accurately nowcast the complex mesoscale mechanisms (i.e., local influence of topography). This directly impacts the retrieved position and motion of the storms, and consequently, the likely associated storm severity. Although a successful warning system based on lightning and radar observations has been developed, there remains a lack of knowledge of storm dynamics that could lead to forecast improvements. The present study explores the capabilities of the radar network at the Meteorological Service of Catalonia to retrieve dual-Doppler wind fields to study the dynamics of Catalan thunderstorms. A severe thunderstorm that splits and a tornado-producing supercell that is channeled through a valley are used to demonstrate the capabilities of an advanced open source technique that retrieves dynamical variables from C-band operational radars in complex terrain. For the first time in the Iberian Peninsula, complete 3D storm-relative winds are obtained, providing information about the internal dynamics of the storms. This aids in the analyses of the interaction between different storm cells within a system and/or the interaction of the cells with the local topography.


2014 ◽  
Vol 27 (10) ◽  
pp. 3827-3847 ◽  
Author(s):  
John T. Allen ◽  
David J. Karoly ◽  
Kevin J. Walsh

Abstract The influence of a warming climate on the occurrence of severe thunderstorms over Australia is, as yet, poorly understood. Based on methods used in the development of a climatology of observed severe thunderstorm environments over the continent, two climate models [Commonwealth Scientific and Industrial Research Organisation Mark, version 3.6 (CSIRO Mk3.6) and the Cubic-Conformal Atmospheric Model (CCAM)] have been used to produce simulated climatologies of ingredients and environments favorable to severe thunderstorms for the late twentieth century (1980–2000). A novel evaluation of these model climatologies against data from both the ECMWF Interim Re-Analysis (ERA-Interim) and reports of severe thunderstorms from observers is used to analyze the capability of the models to represent convective environments in the current climate. This evaluation examines the representation of thunderstorm-favorable environments in terms of their frequency, seasonal cycle, and spatial distribution, while presenting a framework for future evaluations of climate model convective parameters. Both models showed the capability to explain at least 75% of the spatial variance in both vertical wind shear and convective available potential energy (CAPE). CSIRO Mk3.6 struggled to either represent the diurnal cycle over a large portion of the continent or resolve the annual cycle, while in contrast CCAM showed a tendency to underestimate CAPE and 0–6-km bulk magnitude vertical wind shear (S06). While spatial resolution likely contributes to rendering of features such as coastal moisture and significant topography, the distribution of severe thunderstorm environments is found to have greater sensitivity to model biases. This highlights the need for a consistent approach to evaluating convective parameters and severe thunderstorm environments in present-day climate: an example of which is presented here.


Sign in / Sign up

Export Citation Format

Share Document