Upper limit for sea ice albedo feedback contribution to global warming

1991 ◽  
Vol 96 (D5) ◽  
pp. 9169 ◽  
Author(s):  
Curt Covey ◽  
Karl E. Taylor ◽  
Robert E. Dickinson
2016 ◽  
Vol 29 (24) ◽  
pp. 9125-9139 ◽  
Author(s):  
Adeline Bichet ◽  
Paul J. Kushner ◽  
Lawrence Mudryk

Abstract Better constraining the continental climate response to anthropogenic forcing is essential to improve climate projections. In this study, pattern scaling is used to extract, from observations, the patterned response of sea surface temperature (SST) and sea ice concentration (SICE) to anthropogenically dominated long-term global warming. The SST response pattern includes a warming of the tropical Indian Ocean, the high northern latitudes, and the western boundary currents. The SICE pattern shows seasonal variations of the main locations of sea ice loss. These SST–SICE response patterns are used to drive an ensemble of an atmospheric general circulation model, the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, version 5 (CAM5), over the period 1980–2010 along with a standard AMIP ensemble using observed SST—SICE. The simulations enable attribution of a variety of observed trends of continental climate to global warming. On the one hand, the warming trends observed in all seasons across the entire Northern Hemisphere extratropics result from global warming, as does the snow loss observed over the northern midlatitudes and northwestern Eurasia. On the other hand, 1980–2010 precipitation trends observed in winter over North America and in summer over Africa result from the recent decreasing phase of the Pacific decadal oscillation and the recent increasing phase of the Atlantic multidecadal oscillation, respectively, which are not part of the global warming signal. The method holds promise for near-term decadal climate prediction but as currently framed cannot distinguish regional signals associated with oceanic internal variability from aerosol forcing and other sources of short-term forcing.


1997 ◽  
Vol 25 ◽  
pp. 327-332 ◽  
Author(s):  
Marika M. Holland ◽  
Julie L. Schramm ◽  
Judith A. Curry

Due to large uncertainties in many of the parameters used to model sea ice, it is possible that models with significantly different physical processes can be tuned to obtain realistic present-day simulations. However, in studies of climate change, it is the response of the model it various perturbations that is important, in studies response can be significantly different in sea-ice models that include or exclude various physical feedback mechanisms. Because simplifications in sea-ice physics are necessary for general circulation model experiments, it is important to assess which physical processes are essential for the accurate determination of the sensitivity of the ice pack to climate perturbations. We have attempted to address these issues using a new coupled ice-thickness distribution ocean mixed-layer model. The sensitivity of the model to surface heat-flux perturbations is examined and the importance of the ice ocean and ice-albedo feedback mechanisms in determining this sensitivity is analyzed. We find that the ice ocean and ice-albedo feedback processes are not mutually exclusive, and that they both significantly alter the model response to surface heat flux perturbations.


2021 ◽  
pp. 1-40
Author(s):  
Yue Wu ◽  
David P. Stevens ◽  
Ian A. Renfrew ◽  
Xiaoming Zhai

AbstractThe ocean response to wintertime sea-ice retreat is investigated in the coupled climate model HiGEM. We focus on the marginal ice zone and adjacent waters of the Nordic Seas, where the air-sea temperature difference can be large during periods of off-ice winds promoting high heat flux events. Both control and transient climate model ensembles are examined, which allows us to isolate the ocean response due to sea-ice retreat from the response due to climate change. As the wintertime sea-ice edge retreats towards the Greenland coastline, it exposes waters that were previously covered by ice which enhances turbulent heat loss and mechanical mixing, leading to a greater loss of buoyancy and deeper vertical mixing in this location. However, under global warming, the buoyancy loss is inhibited as the atmosphere warms more rapidly than the ocean which reduces the air-sea temperature difference. This occurs most prominently further away from the retreating ice edge, over the Greenland Sea gyre. Over the gyre the upper ocean also warms significantly, resulting in a more stratified water column and, as a consequence, a reduction in the depth of convective mixing. In contrast, closer to the coast the effect of global warming is overshadowed by the effect of the sea-ice retreat, leading to significant changes in ocean temperature and salinity in the vicinity of the marginal ice zone.


2021 ◽  
Vol 34 (2) ◽  
pp. 755-772
Author(s):  
Patrik L. Pfister ◽  
Thomas F. Stocker

AbstractThe global-mean climate feedback quantifies how much the climate system will warm in response to a forcing such as increased CO2 concentration. Under a constant forcing, this feedback becomes less negative (increasing) over time in comprehensive climate models, which has been attributed to increases in cloud and lapse-rate feedbacks. However, out of eight Earth system models of intermediate complexity (EMICs) not featuring interactive clouds, two also simulate such a feedback increase: Bern3D-LPX and LOVECLIM. Using these two models, we investigate the causes of the global-mean feedback increase in the absence of cloud feedbacks. In both models, the increase is predominantly driven by processes in the Southern Ocean region. In LOVECLIM, the global-mean increase is mainly due to a local longwave feedback increase in that region, which can be attributed to lapse-rate changes. It is enhanced by the slow atmospheric warming above the Southern Ocean, which is delayed due to regional ocean heat uptake. In Bern3D-LPX, this delayed regional warming is the main driver of the global-mean feedback increase. It acts on a near-constant local feedback pattern mainly determined by the sea ice–albedo feedback. The global-mean feedback increase is limited by the availability of sea ice: faster Southern Ocean sea ice melting due to either stronger forcing or higher equilibrium climate sensitivity (ECS) reduces the increase of the global mean feedback in Bern3D-LPX. In the highest-ECS simulation with 4 × CO2 forcing, the feedback even becomes more negative (decreasing) over time. This reduced ice–albedo feedback due to sea ice depletion is a plausible mechanism for a decreasing feedback also in high-forcing simulations of other models.


2014 ◽  
Vol 14 (7) ◽  
pp. 10929-10999 ◽  
Author(s):  
R. Döscher ◽  
T. Vihma ◽  
E. Maksimovich

Abstract. The Arctic sea ice is the central and essential component of the Arctic climate system. The depletion and areal decline of the Arctic sea ice cover, observed since the 1970's, have accelerated after the millennium shift. While a relationship to global warming is evident and is underpinned statistically, the mechanisms connected to the sea ice reduction are to be explored in detail. Sea ice erodes both from the top and from the bottom. Atmosphere, sea ice and ocean processes interact in non-linear ways on various scales. Feedback mechanisms lead to an Arctic amplification of the global warming system. The amplification is both supported by the ice depletion and is at the same time accelerating the ice reduction. Knowledge of the mechanisms connected to the sea ice decline has grown during the 1990's and has deepened when the acceleration became clear in the early 2000's. Record summer sea ice extents in 2002, 2005, 2007 and 2012 provided additional information on the mechanisms. This article reviews recent progress in understanding of the sea ice decline. Processes are revisited from an atmospheric, ocean and sea ice perspective. There is strong evidence for decisive atmospheric changes being the major driver of sea ice change. Feedbacks due to reduced ice concentration, surface albedo and thickness allow for additional local atmosphere and ocean influences and self-supporting feedbacks. Large scale ocean influences on the Arctic Ocean hydrology and circulation are highly evident. Northward heat fluxes in the ocean are clearly impacting the ice margins, especially in the Atlantic sector of the Arctic. Only little indication exists for a direct decisive influence of the warming ocean on the overall sea ice cover, due to an isolating layer of cold and fresh water underneath the sea ice.


2021 ◽  
Author(s):  
Marco Morando

Abstract Climate Change is a widely debated scientific subject and Anthropogenic Global Warming is its main cause. Nevertheless, several authors have indicated solar activity and Atlantic Multi-decadal Oscillation variations may also influence Climate Change. This article considers the amplification of solar radiation’s and Atlantic Multi-decadal Oscillation’s variations, via sea ice cover albedo feedbacks in the Arctic regions, providing a conceptual advance in the application of Arctic Amplification for modelling historical climate change. A 1-dimensional physical model, using sunspot number count and Atlantic Multi-decadal Oscillation index as inputs, can simulate the average global temperature’s anomaly and the Arctic Sea Ice Extension for the past eight centuries. This model represents an innovative progress in understanding how existing studies on Arctic sea ice’s albedo feedbacks can help complementing the Anthropogenic Global Warming models, thus helping to define more precise models for future climate change.


Author(s):  
Dmitry Yumashev ◽  
Chris Hope ◽  
Kevin Schaefer ◽  
Kathrin Riemann-Campe ◽  
Fernando Iglesias-Suarez ◽  
...  

Arctic feedbacks will accelerate climate change and could jeopardise mitigation efforts. The permafrost carbon feedback releases carbon to the atmosphere from thawing permafrost and the sea ice albedo feedback increases solar absorption in the Arctic Ocean. A constant positive albedo feedback and zero permafrost feedback have been used in nearly all climate policy studies to date, while observations and models show that the permafrost feedback is significant and that both feedbacks are nonlinear. Using novel dynamic emulators in the integrated assessment model PAGE-ICE, we investigate nonlinear interactions of the two feedbacks with the climate and economy under a range of climate scenarios consistent with the Paris Agreement. The permafrost feedback interacts with the land and ocean carbon uptake processes, and the albedo feedback evolves through a sequence of nonlinear transitions associated with the loss of Arctic sea ice in different months of the year. The US’s withdrawal from the current national pledges could increase the total discounted economic impact of the two Arctic feedbacks until 2300 by $25 trillion, reaching nearly $120 trillion, while meeting the 1.5 °C and 2 °C targets will reduce the impact by an order of magnitude.


2021 ◽  
Author(s):  
Zuonan Cao ◽  
Zhenhuan Guan ◽  
Peter Kühn ◽  
Jinsheng He ◽  
Thomas Scholten

<p>Many species showed that their richness and distribution shifts climate-driven towards higher elevation in Tibetan Plateau. However, vegetation and soil data from alpine grassland elevational gradients are rare (Huang et al., 2018). It is mostly unknown how the "grass-line" will respond to global warming and whether soils play a significant role in the vegetation pattern in high-altitude regions. At a local scale, the growth and distribution of vegetation at its upper limit may depend on nutrient limitation, as shown for treelines from the Himalayas. For example, the limited nutrient supply of soil N, K, Mg, and P becomes more intense with elevation, which declines in nutrient supply spatially coincides with abrupt changes in vegetation composition and growth parameters (Schwab et al., 2016). And low soil nutrient availability could affect tree growth in the Rolwaling Himal, Nepal treeline ecotone (Drollinger et al., 2017). To better understand the interrelationship between soil properties and grass growth at this upper limit, we took random soil samples in 3 altitudes, 3 geomorphic positions with 3 depth increments from Haibei grassland, northern Tibetan Plateau. Soil properties, like texture, bulk density, total C, N, and P fractions, were analyzed and compared to vegetation data.<br>Further, soil and vegetation data from open-top chambers (OTC) experiments to simulate global warming were analyzed better to understand the role of temperature for grass line-shift. The first results show that species composition change with altitude towards grassland plant communities with lower demands for P, which can be compared with the nutrient addition experiment that P addition alone significantly affects species diversity and biomass in the same area (Ren et al., 2016). We suppose that specific combinations of soil properties could limit grass growth and be even more marked than the warming, which controls biodiversity and biomass production in high mountain grassland ecosystems. </p>


Sign in / Sign up

Export Citation Format

Share Document