Accounting for Working Memory and Attentional Processing in Decision Making

2012 ◽  
Author(s):  
Ana M. Franco-Watkins ◽  
Joseph G. Johnson
2018 ◽  
Author(s):  
Jorge Jaramillo ◽  
Jorge F. Mejias ◽  
Xiao-Jing Wang

AbstractComputational modeling of brain mechanisms of cognition has been largely focused on the cortex, but recent experiments have shown that higher-order nuclei of the thalamus, in particular the pulvinar, participate in major cognitive functions and are implicated in psychiatric disorders. Here we show that a pulvino-cortical circuit model, composed of two cortical areas and the pulvinar, captures a range of physiological and behavioral observations related to the macaque pulvinar. Effective connections between the two cortical areas are gated by the pulvinar, allowing the pulvinar to shift the operation regime of these areas during attentional processing and working memory, as well as to resolve decision-making conflict. Furthermore, cortico-pulvinar projections that engage the thalamic reticular nucleus enable the pulvinar to estimate decision-making confidence. Finally, feedforward and feedback pulvino-cortical pathways participate in frequency-dependent inter-areal interactions that modify the relative hierarchical positions of cortical areas. Overall, our model suggests that the pulvinar provides crucial contextual modulation to cortical computations associated with cognition.


2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


2018 ◽  
Vol 3 (2) ◽  
pp. 484-487
Author(s):  
Santosh Kumar Deo ◽  
Kopila Agrawal ◽  
Prem Bhattrai ◽  
Raju Kumar Chaudhary

Introduction: Working memory is a kind of short term memory important for reasoning and guiding decision-making and behavioral process.Objective: The goal of the present research was to study the outcome of single bout of acute moderate-intensity exercise on working memory.Methodology: Twenty two male subjects were asked to perform working memory task by 2n back task in baseline resting, immediately after exercise and after five minute of exercise session. 3 minute step test procedure was used as a moderate intensity exercise intervention.Results: The percentage correctness of 2n back task of working memory was found to be 64.36% for baseline resting condition, 78.01 % for immediately after 3-minute step test and 80.70% for 5 minute after the exercise. In both exercise session (i.e. immediately after exercise and after 5 minute of exercise), significant improvement (p value <0.05) in working memory was seen as compared to the baseline resting session while no such significant beneficial improvement was seen when compared between immediately after exercise and after 5 minute of exercise.Conclusion: Improvement in working memory after moderate exercise intervention was seen, which is important for learning and memory and decision-making.  BJHS 2018;3(2)6:484-487.


2019 ◽  
Author(s):  
Hayden Schill ◽  
Jeremy Wolfe ◽  
Timothy F. Brady

Memory capacity depends on prior knowledge, both in working memory and in long-term memory. For example, radiologists have improved long-term memory for medical images compared to novices. Furthermore, people tend to remember abnormal or surprising items best. This is often claimed to arise primarily because such items attract additional attention at encoding. How do expertise and abnormality interact when experts are actively searching for abnormalities; e.g. radiologists looking at mammograms? In the current work, we investigate whether expert radiologists (N=32) show improved memory performance for abnormal images compared to novice participants (N=60). We consider two types of “abnormality.” A mammogram can have a focal abnormality that can be localized or it could simply be the mammogram of a woman known to have cancer (e.g. the image of the breast contralateral to the focal abnormality). Must an image have a focal abnormality for additional attentional processing to be engaged? We found that experts have better memory for mammograms than novice participants and enhanced memory for abnormal images relative to normal images. Overall, radiologists showed no memory benefit for the contralateral-abnormal images and did not discriminate them from normal images, but had enhanced memory for images with focal abnormalities. Our results suggest that focal abnormalities play an important role in enhancing memory of expert observers.


2021 ◽  
pp. 1-14
Author(s):  
Khoi D. Vo ◽  
Audrey Siqi-Liu ◽  
Alondra Chaire ◽  
Sophia Li ◽  
Elise Demeter ◽  
...  

Abstract Attention and working memory (WM) have classically been considered as two separate cognitive functions, but more recent theories have conceptualized them as operating on shared representations and being distinguished primarily by whether attention is directed internally (WM) or externally (attention, traditionally defined). Supporting this idea, a recent behavioral study documented a “WM Stroop effect,” showing that maintaining a color word in WM impacts perceptual color-naming performance to the same degree as presenting the color word externally in the classic Stroop task. Here, we employed ERPs to examine the neural processes underlying this WM Stroop task compared to those in the classic Stroop and in a WM-control task. Based on the assumption that holding a color word in WM would (pre-)activate the same color representation as by externally presenting that color word, we hypothesized that the neural cascade of conflict–control processes would occur more rapidly in the WM Stroop than in the classic Stroop task. Our behavioral results replicated equivalent interference behavioral effects for the WM and classic Stroop tasks. Importantly, however, the ERP signatures of conflict detection and resolution displayed substantially shorter latencies in the WM Stroop task. Moreover, delay-period conflict in the WM Stroop task, but not in the WM control task, impacted the ERP and performance measures for the WM probe stimuli. Together, these findings provide new insights into how the brain processes conflict between internal representations and external stimuli, and they support the view of shared representations between internally held WM content and attentional processing of external stimuli.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Julie Hicks Patrick ◽  
Jenessa C. Steele ◽  
S. Melinda Spencer

The primary aim of this study was to examine the contributions of individual characteristics and strategic processing to the prediction of decision quality. Data were provided by 176 adults, ages 18 to 93 years, who completed computerized decision-making vignettes and a battery of demographic and cognitive measures. We examined the relations among age, domain-specific experience, working memory, and three measures of strategic information search to the prediction of solution quality using a 4-step hierarchical linear regression analysis. Working memory and two measures of strategic processing uniquely contributed to the variance explained. Results are discussed in terms of potential advances to both theory and intervention efforts.


Sign in / Sign up

Export Citation Format

Share Document