What makes social Q&A site use enjoyable? The role of using modes and intrinsic needs satisfaction.

2019 ◽  
Vol 8 (3) ◽  
pp. 190-197
Author(s):  
Di Cui ◽  
Qihao Ji
Keyword(s):  
Site Use ◽  
Author(s):  
Alison Carrol

In 1918 the end of the First World War triggered the return of Alsace to France after almost fifty years of annexation into the German Empire. Enthusiastic crowds in Paris and Alsace celebrated the homecoming of the so-called lost province, but return proved far less straightforward than anticipated. The region’s German-speaking population demonstrated strong commitment to local cultures and institutions, as well as their own visions of return to France. As a result, the following two decades saw politicians, administrators, industrialists, cultural elites, and others grapple with the question of how to make Alsace French again. The answer did not prove straightforward; differences of opinion emerged both inside and outside the region, and reintegration became a fiercely contested process that remained incomplete when war broke out in 1939. The Return of Alsace to France examines this story. Drawing upon national, regional, and local archives, it follows the difficult process of Alsace’s reintegration into French society, culture, political and economic systems, and legislative and administrative institutions. It connects the microhistory of the region with the macro levels of national policy, international relations, and transnational networks, and with the cross-border flows of ideas, goods, people, and cultural products that shaped daily life in Alsace. Revealing Alsace to be a site of exchange between a range of interest groups with different visions of the region’s future, this book underlines the role of regional populations and cross-border interactions in forging the French Third Republic.


2020 ◽  
Vol 402 (1) ◽  
pp. 89-98
Author(s):  
Nathalie Meiser ◽  
Nicole Mench ◽  
Martin Hengesbach

AbstractN6-methyladenosine (m6A) is the most abundant modification in mRNA. The core of the human N6-methyltransferase complex (MTC) is formed by a heterodimer consisting of METTL3 and METTL14, which specifically catalyzes m6A formation within an RRACH sequence context. Using recombinant proteins in a site-specific methylation assay that allows determination of quantitative methylation yields, our results show that this complex methylates its target RNAs not only sequence but also secondary structure dependent. Furthermore, we demonstrate the role of specific protein domains on both RNA binding and substrate turnover, focusing on postulated RNA binding elements. Our results show that one zinc finger motif within the complex is sufficient to bind RNA, however, both zinc fingers are required for methylation activity. We show that the N-terminal domain of METTL3 alters the secondary structure dependence of methylation yields. Our results demonstrate that a cooperative effect of all RNA-binding elements in the METTL3–METTL14 complex is required for efficient catalysis, and that binding of further proteins affecting the NTD of METTL3 may regulate substrate specificity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Kumar Sinha ◽  
Kristoffer Skovbo Winther

AbstractBacteria synthesize guanosine tetra- and penta phosphate (commonly referred to as (p)ppGpp) in response to environmental stresses. (p)ppGpp reprograms cell physiology and is essential for stress survival, virulence and antibiotic tolerance. Proteins of the RSH superfamily (RelA/SpoT Homologues) are ubiquitously distributed and hydrolyze or synthesize (p)ppGpp. Structural studies have suggested that the shift between hydrolysis and synthesis is governed by conformational antagonism between the two active sites in RSHs. RelA proteins of γ-proteobacteria exclusively synthesize (p)ppGpp and encode an inactive pseudo-hydrolase domain. Escherichia coli RelA synthesizes (p)ppGpp in response to amino acid starvation with cognate uncharged tRNA at the ribosomal A-site, however, mechanistic details to the regulation of the enzymatic activity remain elusive. Here, we show a role of the enzymatically inactive hydrolase domain in modulating the activity of the synthetase domain of RelA. Using mutagenesis screening and functional studies, we identify a loop region (residues 114–130) in the hydrolase domain, which controls the synthetase activity. We show that a synthetase-inactive loop mutant of RelA is not affected for tRNA binding, but binds the ribosome less efficiently than wild type RelA. Our data support the model that the hydrolase domain acts as a molecular switch to regulate the synthetase activity.


2021 ◽  
Vol 1 ◽  
pp. 141-150
Author(s):  
Honorine Harlé ◽  
Pascal Le Masson ◽  
Benoit Weil

AbstractIn industry, there is at once a strong need for innovation and a need to preserve the existing system of production. Thus, although the literature insists on the necessity of the current change toward Industry 4.0, how to implement it remains problematic because the preservation of the factory is at stake. Moreover, the question of the evolution of the system depends on its innovative capability, but it is difficult to understand how a new rule can be designed and implemented in a factory. This tension between preservation and innovation is often explained in the literature as a process of creative destruction. Looking at the problem from another perspective, this article models the factory as a site of creative heritage, enabling creation within tradition, i.e., creating new rules while preserving the system of rules. Two case studies are presented to illustrate the model. The paper shows that design in the factory relies on the ability to validate solutions. To do so, the design process can explore and give new meaning to the existing rules. The role of innovation management is to choose the degree of revision of the rules and to make it possible.


2019 ◽  
Vol 116 (22) ◽  
pp. 10763-10772 ◽  
Author(s):  
Bernd R. Gardill ◽  
Ricardo E. Rivera-Acevedo ◽  
Ching-Chieh Tung ◽  
Filip Van Petegem

Voltage-gated sodium (NaV) and calcium channels (CaV) form targets for calmodulin (CaM), which affects channel inactivation properties. A major interaction site for CaM resides in the C-terminal (CT) region, consisting of an IQ domain downstream of an EF-hand domain. We present a crystal structure of fully Ca2+-occupied CaM, bound to the CT of NaV1.5. The structure shows that the C-terminal lobe binds to a site ∼90° rotated relative to a previous site reported for an apoCaM complex with the NaV1.5 CT and for ternary complexes containing fibroblast growth factor homologous factors (FHF). We show that the binding of FHFs forces the EF-hand domain in a conformation that does not allow binding of the Ca2+-occupied C-lobe of CaM. These observations highlight the central role of the EF-hand domain in modulating the binding mode of CaM. The binding sites for Ca2+-free and Ca2+-occupied CaM contain targets for mutations linked to long-QT syndrome, a type of inherited arrhythmia. The related NaV1.4 channel has been shown to undergo Ca2+-dependent inactivation (CDI) akin to CaVs. We present a crystal structure of Ca2+/CaM bound to the NaV1.4 IQ domain, which shows a binding mode that would clash with the EF-hand domain. We postulate the relative reorientation of the EF-hand domain and the IQ domain as a possible conformational switch that underlies CDI.


1979 ◽  
Author(s):  
P.D. Richardson

Thrombocyte adhesion and aggregation in a vessel or on a chamber wall can be measured most readily if the flow is controlled and steady, and continuous observation is used. Videotape recording is very helpful for subsequent quantification of the dynamics. The adhesion of each thrombocyte can occur for a finite time interval:this interval has been observed to have a wide range. Platelets which escape often leave open a site which attracts other platelets preferentially. The rate of change of adhesion density (platelets/mm2) is affected by the local shear rate and the shear history upstream. Aggregation is affected similarly, and also proceeds with some platelet turnover. The role of erythrocytes in facilitating cross-stream migration of thrombocytes (which can enhance the growth rate of large thrombi) appears due in part to convective flow fields induced by the motion of erythrocytes in a shear flow, which can be demonstrated theoretically and experimentally. Observations of the phenomenlogy of adhesion and aggregation under controlled flow conditions and comparison with fLu id-dynamically based theory allows representation in terras of a small number of parameters with prospects of prediction of behaviour over a wide range of haemodynamic conditions; biochemical changes lead to changes in values of the parameters, so that activating agents and inhibiting agents modify values in different directions.


2002 ◽  
Vol 22 (15) ◽  
pp. 5606-5615 ◽  
Author(s):  
Martha L. Peterson ◽  
Shannon Bertolino ◽  
Frankie Davis

ABSTRACT Immunoglobulin μ alternative RNA processing is regulated during B-cell maturation and requires balanced efficiencies of the competing splice (μm) and cleavage-polyadenylation (μs) reactions. When we deleted sequences 50 to 200 nucleotides beyond the μs poly(A) site, the μs/μm mRNA ratio decreased three- to eightfold in B, plasma, and nonlymphoid cells. The activity could not be localized to a smaller fragment but did function in heterologous contexts. Our data suggest that this region contains an RNA polymerase II pause site that enhances the use of the μs poly(A) site. First, known pause sites replaced the activity of the deleted fragment. Second, the μ fragment, when placed between tandem poly(A) sites, enhanced the use of the upstream poly(A) site. Finally, nuclear run-ons detected an increase in RNA polymerase loading just downstream from the μs poly(A) site, even when the poly(A) site was inactivated. When this μ fragment and another pause site were inserted 1 kb downstream from the μs poly(A) site, they no longer affected the mRNA expression ratio, suggesting that pause sites affect poly(A) site use over a limited distance. Fragments from the immunoglobulin A gene were also found to have RNA polymerase pause site activity.


1993 ◽  
Vol 13 (3) ◽  
pp. 1363-1370 ◽  
Author(s):  
K M Sheehan ◽  
M R Lieber

V(D)J recombination in lymphoid cells is a site-specific process in which the activity of the recombinase enzyme is targeted to signal sequences flanking the coding elements of antigen receptor genes. The order of the steps in this reaction and their mechanistic interdependence are important to the understanding of how the reaction fails and thereby contributes to genomic instability in lymphoid cells. The products of the normal reaction are recombinant joints linking the coding sequences of the receptor genes and, reciprocally, the signal ends. Extrachromosomal substrate molecules were modified to inhibit the physical synapsis of the recombination signals. In this way, it has been possible to assess how inhibiting the formation of one joint affects the resolution efficiency of the other. Our results indicate that signal joint and coding joint formation are resolved independently in that they can be uncoupled from each other. We also find that signal synapsis is critical for the generation of recombinant products, which greatly restricts the degree of potential single-site cutting that might otherwise occur in the genome. Finally, inversion substrates manifest synaptic inhibition at much longer distances than do deletion substrates, suggesting that a parallel rather than an antiparallel alignment of the signals is required during synapsis. These observations are important for understanding the interaction of V(D)J signals with the recombinase. Moreover, the role of signal synapsis in regulating recombinase activity has significant implications for genome stability regarding the frequency of recombinase-mediated chromosomal translocations.


Sign in / Sign up

Export Citation Format

Share Document