Transforming growth factor β 3 causes decreased HaCaT cell alignment to extracellular matrix proteins Fibronectin, Laminin and Collagen type I as a result of an enhanced migratory phenotype

Author(s):  
R. Berends ◽  
M. Youseffi ◽  
M. Denyer
Cells ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1356 ◽  
Author(s):  
Milito ◽  
Brancaccio ◽  
D’Argenio ◽  
Castellano

Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-β1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.


2001 ◽  
Vol 276 (50) ◽  
pp. 46707-46713 ◽  
Author(s):  
Neil A. Bhowmick ◽  
Roy Zent ◽  
Mayshan Ghiassi ◽  
Maureen McDonnell ◽  
Harold L. Moses

Transforming growth factor-β (TGF-β) can induce epithelial to mesenchymal transdifferentiation (EMT) in mammary epithelial cells. TGF-β-meditated EMT involves the stimulation of a number of signaling pathways by the sequential binding of the type II and type I serine/threonine kinase receptors, respectively. Integrins comprise a family of heterodimeric extracellular matrix receptors that mediate cell adhesion and intracellular signaling, hence making them crucial for EMT progression. In light of substantial evidence indicating TGF-β regulation of various β1integrins and their extracellular matrix ligands, we examined the cross-talk between the TGF-β and integrin signal transduction pathways. Using an inducible system for the expression of a cytoplasmically truncated dominant negative TGF-β type II receptor, we blocked TGF-β-mediated growth inhibition, transcriptional activation, and EMT progression. Dominant negative TGF-β type II receptor expression inhibited TGF-β signaling to the SMAD and AKT pathways, but did not block TGF-β-mediated p38MAPK activation. Interestingly, blocking integrin β1function inhibited TGF-β-mediated p38MAPK activation and EMT progression. Limiting p38MAPK activity through the expression of a dominant negative-p38MAPK also blocked TGF-β-mediated EMT. In summary, TGF-β-mediated p38MAPK activation is dependent on functional integrin β1, and p38MAPK activity is required but is not sufficient to induce EMT.


1997 ◽  
Vol 106 (8) ◽  
pp. 669-673 ◽  
Author(s):  
Stephan Lang ◽  
Volker Schilling ◽  
Brigitte Mack ◽  
Barbara Wollenberg ◽  
Andreas Nerlich

Transforming growth factor-β (TGF-β) plays an important role in the regulation of extracellular matrix (ECM) deposition by stimulating the synthesis of individual matrix proteins like tenascin and fibronectin. Cholesteatoma shows significant changes in the ECM, supporting the view of adisturbed cell-matrix interaction. The purpose of our present study was to evaluate the distribution of TGF-β in comparison to the deposition of tenascin, fibronectin, and collagen as major components of the ECM in cholesteatoma (n = 12) by means of histochemistry and immunohistochemistry. We found TGF-P in lymphocytes and fibrohistiocytes in the stroma of 7 cholesteatomas. In corresponding sections, a marked expression of tenascin and fibronectin was seen manifesting as a continuous band along the epidermal-stromal junction, extending to the deeper stroma. In addition, in those cases of TGF-β expression, beginning collagen fibril formation was seen in adjacent deeper stroma layers, indicating beginning stromal fibrosis. These results suggest that TGF-β may be involved in the stimulation of the synthesis of tenascin, fibronectin, and collagen. Furthermore, the enhanced expression of tenascin and fibronectin provides evidence for a deregulated cell-matrix interaction in cholesteatoma associated with the enhanced proliferative process of cholesteatoma formation.


2019 ◽  
Vol 316 (3) ◽  
pp. H596-H608 ◽  
Author(s):  
Rachel C. Childers ◽  
Ian Sunyecz ◽  
T. Aaron West ◽  
Mary J. Cismowski ◽  
Pamela A. Lucchesi ◽  
...  

Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a “hypofibrotic” phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a “hypofibrotic” phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.


Sign in / Sign up

Export Citation Format

Share Document