scholarly journals Erratum: Random access in large-scale DNA data storage

2018 ◽  
Vol 36 (7) ◽  
pp. 660-660 ◽  
Author(s):  
Lee Organick ◽  
Siena Dumas Ang ◽  
Yuan-Jyue Chen ◽  
Randolph Lopez ◽  
Sergey Yekhanin ◽  
...  
2020 ◽  
Author(s):  
Filip Bošković ◽  
Alexander Ohmann ◽  
Ulrich F. Keyser ◽  
Kaikai Chen

AbstractThree-dimensional (3D) DNA nanostructures built via DNA self-assembly have established recent applications in multiplexed biosensing and storing digital information. However, a key challenge is that 3D DNA structures are not easily copied which is of vital importance for their large-scale production and for access to desired molecules by target-specific amplification. Here, we build 3D DNA structural barcodes and demonstrate the copying and random access of the barcodes from a library of molecules using a modified polymerase chain reaction (PCR). The 3D barcodes were assembled by annealing a single-stranded DNA scaffold with complementary short oligonucleotides containing 3D protrusions at defined locations. DNA nicks in these structures are ligated to facilitate barcode copying using PCR. To randomly access a target from a library of barcodes, we employ a non-complementary end in the DNA construct that serves as a barcode-specific primer template. Readout of the 3D DNA structural barcodes was performed with nanopore measurements. Our study provides a roadmap for convenient production of large quantities of self-assembled 3D DNA nanostructures. In addition, this strategy offers access to specific targets, a crucial capability for multiplexed single-molecule sensing and for DNA data storage.


2017 ◽  
Author(s):  
Lee Organick ◽  
Siena Dumas Ang ◽  
Yuan-Jyue Chen ◽  
Randolph Lopez ◽  
Sergey Yekhanin ◽  
...  

Current storage technologies can no longer keep pace with exponentially growing amounts of data. 1 Synthetic DNA offers an attractive alternative due to its potential information density of ~ 1018 B/mm3, 107 times denser than magnetic tape, and potential durability of thousands of years.2 Recent advances in DNA data storage have highlighted technical challenges, in particular, coding and random access, but have stored only modest amounts of data in synthetic DNA. 3,4,5 This paper demonstrates an end-to-end approach toward the viability of DNA data storage with large-scale random access. We encoded and stored 35 distinct files, totaling 200MB of data, in more than 13 million DNA oligonucleotides (about 2 billion nucleotides in total) and fully recovered the data with no bit errors, representing an advance of almost an order of magnitude compared to prior work. 6 Our data curation focused on technologically advanced data types and historical relevance, including the Universal Declaration of Human Rights in over 100 languages,7 a high-definition music video of the band OK Go,8 and a CropTrust database of the seeds stored in the Svalbard Global Seed Vault.9 We developed a random access methodology based on selective amplification, for which we designed and validated a large library of primers, and successfully retrieved arbitrarily chosen items from a subset of our pool containing 10.3 million DNA sequences. Moreover, we developed a novel coding scheme that dramatically reduces the physical redundancy (sequencing read coverage) required for error-free decoding to a median of 5x, while maintaining levels of logical redundancy comparable to the best prior codes. We further stress-tested our coding approach by successfully decoding a file using the more error-prone nanopore-based sequencing. We provide a detailed analysis of errors in the process of writing, storing, and reading data from synthetic DNA at a large scale, which helps characterize DNA as a storage medium and justify our coding approach. Thus, we have demonstrated a significant improvement in data volume, random access, and encoding/decoding schemes that contribute to a whole-system vision for DNA data storage.


2018 ◽  
Vol 36 (3) ◽  
pp. 242-248 ◽  
Author(s):  
Lee Organick ◽  
Siena Dumas Ang ◽  
Yuan-Jyue Chen ◽  
Randolph Lopez ◽  
Sergey Yekhanin ◽  
...  

2019 ◽  
Vol 15 (01) ◽  
pp. 1-8
Author(s):  
Ashish C Patel ◽  
C G Joshi

Current data storage technologies cannot keep pace longer with exponentially growing amounts of data through the extensive use of social networking photos and media, etc. The "digital world” with 4.4 zettabytes in 2013 has predicted it to reach 44 zettabytes by 2020. From the past 30 years, scientists and researchers have been trying to develop a robust way of storing data on a medium which is dense and ever-lasting and found DNA as the most promising storage medium. Unlike existing storage devices, DNA requires no maintenance, except the need to store at a cool and dark place. DNA has a small size with high density; just 1 gram of dry DNA can store about 455 exabytes of data. DNA stores the informations using four bases, viz., A, T, G, and C, while CDs, hard disks and other devices stores the information using 0’s and 1’s on the spiral tracks. In the DNA based storage, after binarization of digital file into the binary codes, encoding and decoding are important steps in DNA based storage system. Once the digital file is encoded, the next step is to synthesize arbitrary single-strand DNA sequences and that can be stored in the deep freeze until use.When there is a need for information to be recovered, it can be done using DNA sequencing. New generation sequencing (NGS) capable of producing sequences with very high throughput at a much lower cost about less than 0.1 USD for one MB of data than the first sequencing technologies. Post-sequencing processing includes alignment of all reads using multiple sequence alignment (MSA) algorithms to obtain different consensus sequences. The consensus sequence is decoded as the reversal of the encoding process. Most prior DNA data storage efforts sequenced and decoded the entire amount of stored digital information with no random access, but nowadays it has become possible to extract selective files (e.g., retrieving only required image from a collection) from a DNA pool using PCR-based random access. Various scientists successfully stored up to 110 zettabytes data in one gram of DNA. In the future, with an efficient encoding, error corrections, cheaper DNA synthesis,and sequencing, DNA based storage will become a practical solution for storage of exponentially growing digital data.


2017 ◽  
Vol MCSP2017 (01) ◽  
pp. 7-10 ◽  
Author(s):  
Subhashree Rath ◽  
Siba Kumar Panda

Static random access memory (SRAM) is an important component of embedded cache memory of handheld digital devices. SRAM has become major data storage device due to its large storage density and less time to access. Exponential growth of low power digital devices has raised the demand of low voltage low power SRAM. This paper presents design and implementation of 6T SRAM cell in 180 nm, 90 nm and 45 nm standard CMOS process technology. The simulation has been done in Cadence Virtuoso environment. The performance analysis of SRAM cell has been evaluated in terms of delay, power and static noise margin (SNM).


2009 ◽  
Vol 15 (S3) ◽  
pp. 53-54
Author(s):  
Aiying Wu ◽  
P. M. Vilarinho

AbstractLead zirconate - lead titanate (PZT) materials are commercially important piezoelectric and ferroelectrics in a wide range of applications, such as data storage (dynamic access and ferroelectric random access memories) and sensing and actuating devices. PZT with the morphotropic phase boundary composition offers the highest piezoelectric response and at the present there are no fullydeveloped alternative materials to PZT. The importance of PZT associated with the continuous requirements of device miniaturization, imposes the development of high quality PZT thin films with optimized properties. Concomitantly due to the dependence of the final properties of thin films on the details of the microstructure a thoroughly analysis at the local scale of their microstructure is necessary. Sol-gel method, is one of the Chemical Solution Deposition techniques used to prepare oxide thin films, such as PZT. Starting from a solution, a solid network is progressively formed via inorganic polymerisation reactions. Most metal alkoxides used for sol-gel synthesis are highly reactive towards hydrolysis and condensation. Therefore their chemical reactivity has to be tailored via the chemical modification (or complexation) of metal alkoxides to avoid uncontrolled reactions and precipitation. For PZT sol gel thin film preparation, two chemical routes are frequently used depending on the nature of the molecular precursor, namely methotoxyethanol (MOE) route and diol-route.


2013 ◽  
Vol 765-767 ◽  
pp. 1087-1091
Author(s):  
Hong Lin ◽  
Shou Gang Chen ◽  
Bao Hui Wang

Recently, with the development of Internet and the coming of new application modes, data storage has some new characters and new requirements. In this paper, a Distributed Computing Framework Mass Small File storage System (For short:Dnet FS) based on Windows Communication Foundation in .Net platform is presented, which is lightweight, good-expansibility, running in cheap hardware platform, supporting Large-scale concurrent access, and having certain fault-tolerance. The framework of this system is analyzed and the performance of this system is tested and compared. All of these prove this system meet requirements.


Sign in / Sign up

Export Citation Format

Share Document