scholarly journals PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression

Leukemia ◽  
2021 ◽  
Author(s):  
Shengnan Yuan ◽  
Xiaomin Wang ◽  
Shuaibing Hou ◽  
Tengxiao Guo ◽  
Yanjie Lan ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 783-783
Author(s):  
Xiaomin Wang ◽  
Shengnan Yuan ◽  
Shuaibing Hou ◽  
Yanjie Lan ◽  
Tengxiao Guo ◽  
...  

Abstract T cell acute lymphoblastic leukemia (T-ALL) is one of the most frequent hematologic malignancies resulted from gene mutations and/or genomic rearrangements that occur in T cell progenitors. The 5-year survival rate of T-ALL patients is less than 50%. Much efforts have been dedicated to decipher the molecular events underlying TALL transformation, with the goals to identify specific therapeutic targets and develop new and more effective drugs. As a member of JAK kinase family, JAK3 mutations can be identified in 16.1% of T-ALL cases, and JAK3 M511I mutation is the most common one within all JAK3 mutations. Activating JAK3 M511I mutation induced a lympho-proliferative disorder, that followed by a T-ALL-like disease. PHF6 mutation is one of the most common co-existing gene mutations with JAK3 in T-ALL patients. Co-mutation events of JAK3 and PHF6 account for 1.89%-10.0% in T-ALL cases. However, the role(s) of PHF6 and JAK3 co-mutations in tumorigenesis is unknown. Here in this study, we first analyzed the genetic data of 449 T-ALL cases from multiple clinical centers in which JAK/STAT mutations is about 21% of the total cases. Interestingly, we found that PHF6 mutations were significantly associated with JAK3 mutations in these T-ALL cases (P<0.05), and the JAK3 and PHF6 co-mutation occurred in 7.2% of the cohort. Significantly, the average survival time of PHF6 and JAK/STAT co-mutated group was much shorter than that of the single JAK/STAT mutated group (P<0.05) or none-PHF6/JAK/STAT mutated group (P<0.001). We generated Phf6 KO+JAK3 M511I mice by transplanting JAK3M511I infected Phf6 Lin - cells into wild-type mice. All Phf6 KO+JAK3M511Imice succumbed to leukemia from 74 to 101 days after transplantation with significantly shorter survival time than that of Phf6WT+JAK3M511Imice. The Phf6 KO+JAK3M511I mice showed more aggressive phenotypes of T-ALL than Phf6WT+JAK3M511I mice, including higher counts of WBCs, neutrophils and lymphocytes in peripheral blood, as well as higher degree of extramedullary infiltration in spleen, liver, lung and brain. Extreme limiting dilution transplantation assays demonstrated a marked increase in leukemia-initiating cell activity in Phf6 KO +JAK3M511Icells when compared with Phf6WT +JAK3M511Icells, supporting a role for loss of Phf6 in promoting leukemia blast self-renewal and proliferation. To investigate the underlying molecular mechanisms of Phf6 in accelerating T-ALL development,we performed RNAseq to analyze the transcriptome programing changes associated with Phf6 in isogenic Phf6WT +JAK3M511I or Phf6KO +JAK3M511IT-ALL cells. Gene set enrichment analysis (GSEA) showed up-regulated cell cycle in Phf6 KO +JAK3 M511I leukemia cells. We then performed Chromatin immunoprecipitation sequencing (ChIP-seq) and found that PHF6 associated with BAI1 gene. qPCR and Western blot showed that the mRNA and protein expression of Bai1/BAI1 were significantly decreased in Phf6KO +JAK3M511Icells in comparison with Phf6 WT+JAK3M511I cells. BAI1 has been reported to prevent MDM2-mediated P53 ubiquitination, and loss of BAI1 reduces P53 level. We found that the protein expression of BAI1 and P53 was decreased, and the ubiquitination of P53 was significantly increased in PHF6 knockdown (KD) MOLT-4 cells (T-ALL) when compared with the control cells. BAI1 overexpression in PHF6 KD MOLT-4 cells significantly increased P53 expression in PHF6 KD+BAI1 OE MOLT-4 cells when compared with that of PHF6 KD cells. It suggested that Phf6 deficiency increased BAI1-mediated P53 degradation. To confirm this, we treated Phf6 KO + JAK3M511I mice with a JAK3 inhibitor (ruxolitinib) in combination with a MDM2 inhibitor (idasanutlin), and found a synergistic response of the treatment within a significant attenuation in leukemia burden in vivo. In conclusion, we found that PHF6 mutation frequently co-existed with JAK3 mutation in T-ALLs, and together they can drive an aggressive leukemia in mice model. Notably, PHF6 deficiency promoted JAK3-induced T-ALL progression by inhibiting BAI1-MDM2-P53 signaling pathway that is independent of JAK3-STAT signaling pathway. We further demonstrated that combination therapy by tofacitinib and idasanutlin can reduce the Phf6 KO and JAK3 M511I leukemia burden in vivo. Our study suggested that combinational usage of JAK3 inhibitors and MDM2 inhibitors may increase the drug benefit for T-ALL patients with PHF6 and JAK3 co-mutations. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruyue Zheng ◽  
Menglin Li ◽  
Shujuan Wang ◽  
Yanfang Liu

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Blood ◽  
2019 ◽  
Vol 133 (21) ◽  
pp. 2291-2304 ◽  
Author(s):  
Diego Sánchez-Martínez ◽  
Matteo L. Baroni ◽  
Francisco Gutierrez-Agüera ◽  
Heleia Roca-Ho ◽  
Oscar Blanch-Lombarte ◽  
...  

Abstract Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient–derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


2017 ◽  
Vol 405 ◽  
pp. 73-78 ◽  
Author(s):  
Sausan A. Moharram ◽  
Kinjal Shah ◽  
Fatima Khanum ◽  
Alissa Marhäll ◽  
Mohiuddin Gazi ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2418-2418
Author(s):  
Lori A. Ehrlich ◽  
Katherine S. Yang-Iott ◽  
Amy DeMicco ◽  
Craig H. Bassing

Abstract Abstract 2418 Acute lymphoblastic leukemia (ALL) is diagnosed in approximately 2500 children per year. Although high cure rates have been achieved for ALL, these cancers account for the highest number of non-brain tumor cancer-related deaths in children. T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy of immature TCRβ−CD4+/CD8+ T-cells that represents ∼15% of pediatric ALL diagnoses, comprises most of the therapy-resistant ALL tumors, and exhibits a high frequency of relapse. The Ataxia Telangiectasia mutated (ATM) protein kinase activates the cellular response to DNA double strand breaks (DSBs) to coordinate DNA repair with cell survival, proliferation, and differentiation. Somatic inactivating ATM mutations occur in 10–20% of T-ALL and T cell lymphoblastic lymphoma (T-LL) tumors and are associated with resistance to genotoxic chemotherapy drugs and therapy relapse, likely driven by increased genomic instability in cells lacking functional ATM. The impaired DSB response of ATM-deficient cells can be exploited to design combinations of genotoxic drugs that specifically kill these cells in vitro. However, the in vivo potential of such drug combinations to treat T-ALL have not been reported. We sought to develop a pre-clinical mouse model that could be used to test effectiveness of such drug combinations to treat T-ALLs and T-LLs with somatic ATM inactivation. Although germline ATM-deficient (Atm−/−) mice succumb by six months of age to immature CD4+/CD8+ T-cell lymphomas containing genomic instability analogous to human T-ALL tumors, we sought a more physiologic model that would avoid potential complications due to ATM-deficiency in thymic epithelial cells. Thus, we generated and characterized VavCre:Atmflox/flox mice with conditional Atm inactivation restricted to hematopoietic cell lineages. These mice contain reduced numbers of TCRβ−CD4+/CD8+, TCRβ+CD4+/CD8−, and TCRβ+CD4−/CD8+ thymocytes and of TCRβ+CD4+ and TCRb+CD8+ splenic T-cells, mirroring the phenotype of Atm−/− mice. We have found that VavCre:Atmflox/flox mice succumb at an average of 95 days (range 53–183 days) to clonal TCRβ−CD4+/CD8+ or TCRβ+CD4−/CD8+ thymic lymphomas. Evaluation of the bone marrow in a subset of these mice indicates that the lymphoma has disseminated and are classified as leukemia. Our initial cytogenetic analyses of these tumors indicate that they contain both clonal translocations involving chromosome 12 and/or chromosome 14 and deletion of one allelic copy of the haploinsufficient Bcl11b tumor suppressor gene. Hemizygous BCL11B inactivation occurs in ∼20% of human T-ALL tumors, indicating the clinical relevance of VavCre:Atmflox/flox mice as a model for human T-ALL. Our ongoing studies include complete cytogenetic and molecular characterization of VavCre:Atmflox/flox tumors and in vivo testing of chemotherapeutics targeting the Atm pathway in this mouse model of T-ALL/T-LL. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Kirsti L. Walker ◽  
Sabrina A. Kabakov ◽  
Fen Zhu ◽  
Myriam N. Bouchlaka ◽  
Sydney L Olson ◽  
...  

AbstractRelapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) is difficult to salvage especially in heavily pretreated patients, thus novel targeted agents are sorely needed. Hyperactivated JAK/STAT and BCL2 overexpression promote increased T-ALL proliferation and survival, and targeting these pathways with ruxolitinib and venetoclax may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect individually, but combination treatment synergistically reduces survival and proliferation of Jurkat and Loucy cells in vitro. Using a xenograft CXCR4+ Jurkat model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS), which expresses CXCL12, as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that neither ruxolitinib nor venetoclax can effectively cross the blood-brain barrier, limiting efficacy against CNS T-ALL. Deletion of CXCR4 on Jurkat cells by CRISPR/Cas9 results in prolonged survival and a reduction in overall and neurologic clinical scores. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis will be needed to eliminate both systemic and CNS T-ALL burden and maximize the possibility of complete remission.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3156-3156
Author(s):  
James D. Phelan ◽  
Cyrus Khandanpour ◽  
Shane Horman ◽  
Marie-Claude Gaudreau ◽  
Jinfang Zhu ◽  
...  

Abstract Abstract 3156 T cell acute lymphoblastic leukemia (T-ALL) is one of the most common childhood cancers associated with mutations in NOTCH1. The Growth factor independent-1 (Gfi1) transcriptional repressor gene was originally discovered as a common target of Moloney murine leukemia virus (MMLV) proviral insertion in murine T-ALL. In fact, the Gfi1 locus is the most frequently activated gene in MMLV-induced T cell leukemia. Therefore, we investigated whether the most commonly activated gene in MMLV-induced murine T-ALL, Gfi1, could collaborate with the most commonly activated gene in human T-ALL, NOTCH1. Here, we show that GFI1 expression is associated with Notch signaling in human T-ALL (p'0.0003). Functionally, Gfi1 collaborates with Notch-induced murine T-ALL by accelerating an already rapid disease model (p=0.03) without altering the lymphoblastic nature of the disease. Furthermore, inducible deletion of Gfi1 is counter-selected in both Notch-driven retroviral and transgenic mouse models of T-ALL; whereas, constitutive absence of Gfi1 completely prevents transgenic Notch-induced T-ALL (p≤0.04). However, T-ALL tumors can form in Gfi1-/- animals using either ENU-mutagenesis or MMLV-infection, yet tumor formation is delayed (p≤0.02, p≤0.03 respectively). This suggests that Gfi1 deletion does not prevent the formation of the T-ALL initiating cell and that Gfi1 might be absolutely required for Notch-induced T-ALL. Most striking is that Gfi1 is required for T-ALL maintenance in vitro and in vivo. Using three separate Tal1-initiated murine T-ALL cell lines, the overexpression of the Gfi1 dominant-negative, Gfi1N382S, was quickly and completely counter-selected. As Gfi1 has previously been found to regulate pro-apoptotic genes in T cells, we attempted to rescue the above loss of function phenotype by overexpressing the anti-apoptotic factor Bcl2. Notably, counter-selection of Gfi1N382 is not observed or is significantly delayed in all three cell lines. In vivo, inducible deletion of Gfi1 leads to both mutagen- or Notch-induced tumor regression as measured by ultrasound. In fact, levels of Gfi1 expression directly correlate to tumor regression and disease free survival of T-ALL. Finally, targeting Gfi1 enhances the efficacy of radiation therapy and bone marrow transplantation. Deletion of Gfi1 sensitizes T-ALL tumors and T cells to p53-dependent apoptosis after exposure to DNA-damaging agents such as radiation, Etoposide or Daunorubicin by de-repression of the pro-apoptotic Gfi1 target gene Bax. These data extend the role of Gfi1 to human T-ALL and suggest that T-ALL is dependent upon Gfi1 to repress pro-apoptotic genes for tumor survival, ultimately highlighting a new therapeutic target in the fight against lymphoid malignancies. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document