scholarly journals Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ruyue Zheng ◽  
Menglin Li ◽  
Shujuan Wang ◽  
Yanfang Liu

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is one of the hematological malignancies. With the applications of chemotherapy regimens and allogeneic hematopoietic stem cell transplantation, the cure rate of T-ALL has been significantly improved. However, patients with relapsed and refractory T-ALL still lack effective treatment options. Gene mutations play an important role in T-ALL. The NOTCH1 gene mutation is the important one among these genetic mutations. Since the mutation of NOTCH1 gene is considered as a driving oncogene in T-ALL, targeting the NOTCH1 signaling patheway may be an effective option to overcome relapsed and refractory T-ALL. This review mainly summarizes the recent research advances of targeting on NOTCH1 signaling pathway in T-ALL.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 783-783
Author(s):  
Xiaomin Wang ◽  
Shengnan Yuan ◽  
Shuaibing Hou ◽  
Yanjie Lan ◽  
Tengxiao Guo ◽  
...  

Abstract T cell acute lymphoblastic leukemia (T-ALL) is one of the most frequent hematologic malignancies resulted from gene mutations and/or genomic rearrangements that occur in T cell progenitors. The 5-year survival rate of T-ALL patients is less than 50%. Much efforts have been dedicated to decipher the molecular events underlying TALL transformation, with the goals to identify specific therapeutic targets and develop new and more effective drugs. As a member of JAK kinase family, JAK3 mutations can be identified in 16.1% of T-ALL cases, and JAK3 M511I mutation is the most common one within all JAK3 mutations. Activating JAK3 M511I mutation induced a lympho-proliferative disorder, that followed by a T-ALL-like disease. PHF6 mutation is one of the most common co-existing gene mutations with JAK3 in T-ALL patients. Co-mutation events of JAK3 and PHF6 account for 1.89%-10.0% in T-ALL cases. However, the role(s) of PHF6 and JAK3 co-mutations in tumorigenesis is unknown. Here in this study, we first analyzed the genetic data of 449 T-ALL cases from multiple clinical centers in which JAK/STAT mutations is about 21% of the total cases. Interestingly, we found that PHF6 mutations were significantly associated with JAK3 mutations in these T-ALL cases (P<0.05), and the JAK3 and PHF6 co-mutation occurred in 7.2% of the cohort. Significantly, the average survival time of PHF6 and JAK/STAT co-mutated group was much shorter than that of the single JAK/STAT mutated group (P<0.05) or none-PHF6/JAK/STAT mutated group (P<0.001). We generated Phf6 KO+JAK3 M511I mice by transplanting JAK3M511I infected Phf6 Lin - cells into wild-type mice. All Phf6 KO+JAK3M511Imice succumbed to leukemia from 74 to 101 days after transplantation with significantly shorter survival time than that of Phf6WT+JAK3M511Imice. The Phf6 KO+JAK3M511I mice showed more aggressive phenotypes of T-ALL than Phf6WT+JAK3M511I mice, including higher counts of WBCs, neutrophils and lymphocytes in peripheral blood, as well as higher degree of extramedullary infiltration in spleen, liver, lung and brain. Extreme limiting dilution transplantation assays demonstrated a marked increase in leukemia-initiating cell activity in Phf6 KO +JAK3M511Icells when compared with Phf6WT +JAK3M511Icells, supporting a role for loss of Phf6 in promoting leukemia blast self-renewal and proliferation. To investigate the underlying molecular mechanisms of Phf6 in accelerating T-ALL development,we performed RNAseq to analyze the transcriptome programing changes associated with Phf6 in isogenic Phf6WT +JAK3M511I or Phf6KO +JAK3M511IT-ALL cells. Gene set enrichment analysis (GSEA) showed up-regulated cell cycle in Phf6 KO +JAK3 M511I leukemia cells. We then performed Chromatin immunoprecipitation sequencing (ChIP-seq) and found that PHF6 associated with BAI1 gene. qPCR and Western blot showed that the mRNA and protein expression of Bai1/BAI1 were significantly decreased in Phf6KO +JAK3M511Icells in comparison with Phf6 WT+JAK3M511I cells. BAI1 has been reported to prevent MDM2-mediated P53 ubiquitination, and loss of BAI1 reduces P53 level. We found that the protein expression of BAI1 and P53 was decreased, and the ubiquitination of P53 was significantly increased in PHF6 knockdown (KD) MOLT-4 cells (T-ALL) when compared with the control cells. BAI1 overexpression in PHF6 KD MOLT-4 cells significantly increased P53 expression in PHF6 KD+BAI1 OE MOLT-4 cells when compared with that of PHF6 KD cells. It suggested that Phf6 deficiency increased BAI1-mediated P53 degradation. To confirm this, we treated Phf6 KO + JAK3M511I mice with a JAK3 inhibitor (ruxolitinib) in combination with a MDM2 inhibitor (idasanutlin), and found a synergistic response of the treatment within a significant attenuation in leukemia burden in vivo. In conclusion, we found that PHF6 mutation frequently co-existed with JAK3 mutation in T-ALLs, and together they can drive an aggressive leukemia in mice model. Notably, PHF6 deficiency promoted JAK3-induced T-ALL progression by inhibiting BAI1-MDM2-P53 signaling pathway that is independent of JAK3-STAT signaling pathway. We further demonstrated that combination therapy by tofacitinib and idasanutlin can reduce the Phf6 KO and JAK3 M511I leukemia burden in vivo. Our study suggested that combinational usage of JAK3 inhibitors and MDM2 inhibitors may increase the drug benefit for T-ALL patients with PHF6 and JAK3 co-mutations. Disclosures No relevant conflicts of interest to declare.


Leukemia ◽  
2021 ◽  
Author(s):  
Shengnan Yuan ◽  
Xiaomin Wang ◽  
Shuaibing Hou ◽  
Tengxiao Guo ◽  
Yanjie Lan ◽  
...  

AbstractT-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As an important epigenetic regulator, PHF6 mutations frequently coexist with JAK3 mutations in T-ALL patients. However, the role(s) of PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor (tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL patients with PHF6 and JAK3 comutation.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-20
Author(s):  
Monique Chavez ◽  
Erica Barnell ◽  
Malachi Griffith ◽  
Zachary Skidmore ◽  
Obi Griffith ◽  
...  

Multiple Myeloma (MM) is a malignancy of plasma cells that affects over 30,000 Americans every year. Despite advances in the treatment of the disease, approximately 12,000 American patients will still die of MM in 2019. One of the mainstays of treatment for MM is the immunomodulatory and antiangiogenic drug lenalidomide; which is used in induction therapy, maintenance therapy and treatment of relapsed disease. Although not fully elucidated, lenalidomide's mechanism of action in MM involves the drug binding to Cerebelon (CBN) and leads to the subsequent degradation of the Ikaros (IKZF1) and Aiolos (IKZF3) transcription factors (TF). These TFs play important regulatory roles in lymphocyte development. Despite lenalidomide's importance in MM treatment, several groups have reported that MM patients treated with lenalidomide rarely go on to develop B-cell acute lymphoblastic leukemia (B-ALL). The genetics and clonal relationship between the MM and subsequent B-ALL have not been previously defined. Importantly, it is not clear if the MM and B-ALL arise from the same founding clone that has been under selective pressure during lenalidomide treatment. As deletions in IKZF1 are common in B-ALL, one could hypothesize that lenalidomide's mechanism of action mimics this alteration and contributes to leukemogenesis. We sequenced the tumors from a cohort of seven patients with MM treated with lenalidomide who later developed B-ALL. These data did not show any mutational overlap between the MM and ALL samples-the tumors arose from different founding clones in each case. However, several genes were recurrently mutated in the B-ALL samples across the seven patients. These genes included TP53, ZFP36L2, KIR3DL2, RNASE-L, and TERT. Strikingly, five of the seven patients had a TP53 mutations in the B-ALL sample that was not present in the matched MM sample. The frequency of TP53 mutations in our cohort was much higher than that reported in adult de novo B-ALL patients which can range between 4.1-6.4% (Hernández-Rivas et al. 2017 and Foa et al. 2013). Utilizing CRISPR-Cas9 gene editing, we disrupted the Zfp36l2 or Actb in murine hematopoietic stem cells (HSCs) of mice with or without loss of Trp53. We performed our first transplantation experiment in which the cohorts of mice have loss of Trp53 alone, loss of Zfp36l2 alone, loss of both Trp53 and Zfp36l2, or a control knockout (KO) of Actb. To characterize the disruption of Zfp36l2 alone and in combination with Trp53 we analyzed the hematopoietic stem and progenitor cell compartments in the bone marrow of the above transplanted mice. In mice with a loss of Zfp36l2 there is a decrease in Lin- Sca-1+ c-Kit+ (LSK), short term-HSC (ST-HSC), and multipotent progenitors (MPP). This decrease was not observed in the mice with a loss of both Trp53 and Zfp36l2, where instead we noted an increase in monocyte progenitors (MP), granulocytes-macrophage progenitors (GMP), and common myeloid progenitors (CMP) cells. In this Trp53 Zfp36l2 double loss model we also noted a decrease in B220+ B-cells that was not seen in the Zfp36l2 alone. In this cohort of Trp53 Zfp36l2 loss, we characterized B-cell development through hardy fraction flow cytometry, and identified a decrease in fractions A and B/C (pre-pro and pro-B-cells, respectively) as compared to Zfp36l2 or Actb alone. As lenalidomide does not bind to Cbn in mice, we used the human B-ALL NALM6 cell line to test if treatment with lenalidomide will lead to a selective growth advantage of cells with the same genes knocked out versus wild-type control cells grown in the same culture. We hypothesize that lenalidomide treatment selectively enriched for pre-existing mutated cell clones that evolved into the B-ALL. Preliminary data in NALM6 cells with a loss of TP53 demonstrate a slight increase in cell number at day 7 compared to a RELA control. These experiments will be repeated with concurrent ZFP36L2 and TP53 mutations as well as ZFP36L2 alone. Treatment-related disease is a key consideration when deciding between different treatment options, and this project aims to understand the relationship between MM treatment and B-ALL occurrence. It may be possible to identify MM patients who are at-risk for B-ALL. For example, MM patients who harbor low-level TP53 mutations prior to lenalidomide treatment could be offered alternative treatment options. Disclosures Barnell: Geneoscopy Inc: Current Employment, Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees. Wartman:Novartis: Consultancy; Incyte: Consultancy.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1726
Author(s):  
Valentina Saccomani ◽  
Angela Grassi ◽  
Erich Piovan ◽  
Deborah Bongiovanni ◽  
Ludovica Di Martino ◽  
...  

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Sign in / Sign up

Export Citation Format

Share Document