Transcriptome analysis reveals dysregulation of genes involved in oxidative phosphorylation in a murine model of retinopathy of prematurity

2020 ◽  
Vol 88 (3) ◽  
pp. 391-397
Author(s):  
Magdalena Zasada ◽  
Anna Madetko-Talowska ◽  
Cecilie Revhaug ◽  
Anne Gro W. Rognlien ◽  
Lars O. Baumbusch ◽  
...  
Author(s):  
Chuan Chen ◽  
Ziyue Zhao ◽  
Qian Dong ◽  
XueHui Gao ◽  
Huibin Xu ◽  
...  

Background:: Xanthones are a class of heterocyclic natural products, which are promising sources of anticancer leads. Phomoxanthone B(PXB)and Phomoxanthone A(PXA)are xanthone dimers. PXA is well studied as an anti-cancer agent, but PXB is not. In our study, PXB was isolated from the endophytic fungus Phomopsis sp. By254. Objective:: The purpose of this study was to identify the underlying anti-tumor mechanisms of PXB in breast cancer MCF7 cell line. Methods:: Apoptosis, cell cycle, proliferation, invasion and migration assays were used to assess the antitumor activity of PXB. RNA sequencing was used to analyze the effect of PXB treatment on gene expression in MCF7 cells. Results:: PXB showed cytotoxicity toward a variety of tumor cells, especially MCF7 cells. PXB inhibited the migration and invasion, arrested cell cycle at G2/M phase and induced apoptosis associated with caspase-3 activation in MCF7 cells. The detailed transcriptome analysis revealed that PXB affected several pathways related to tumorigenesis, metabolisms-, and oxidative phosphorylation in MCF7 cells. KEGG transcriptome analysis revealed that PXB upregulated pro-survival signal pathways such as MAPK, PI3K-AKT and STAT3 pathways. We found that PXB also significantly upregulated the expression of IL24, DDIT3 and XAF1, which may contribute to PXB-induced apoptosis. We further found that PXB may downregulate oxidative phosphorylation by decreasing the expression of electron transport chain genes, especially MT-ND1, which is a potential unfavorable prognostic marker for ER-positive breast cancer. Conclusion:: PXB exerts strong cytotoxicity against human tumor cells and has a potential for ER-positive breast cancer treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Dong ◽  
Morgan Newman ◽  
Stephen M. Pederson ◽  
Karissa Barthelson ◽  
Nhi Hin ◽  
...  

Abstract Background Early-onset familial Alzheimer’s disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer’s disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. Results We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. Conclusions Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3′ untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


2013 ◽  
Vol 54 (8) ◽  
pp. 5294 ◽  
Author(s):  
Victor H. Guaiquil ◽  
Nina J. Hewing ◽  
Michael F. Chiang ◽  
Mark I. Rosenblatt ◽  
R. V. Paul Chan ◽  
...  

2020 ◽  
Author(s):  
Yang Dong ◽  
Morgan Newman ◽  
Stephen Pederson ◽  
Nhi Hin ◽  
Michael Lardelli

AbstractEarly-onset familial Alzheimer’s disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer’s disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed a transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed Goseq analysis and gene set enrichment analysis (GSEA). This predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Extracellular matrix (ECM) related genes were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3’ untranslated regions. These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


2021 ◽  
Vol 8 ◽  
Author(s):  
Suhyung Cho ◽  
Sang-Hyeok Cho ◽  
So-Ra Ko ◽  
Yujin Jeong ◽  
Eunju Lee ◽  
...  

The marine dinoflagellate Alexandrium is associated with harmful algal blooms (HABs) worldwide, causing paralytic shellfish poisoning (PSP) in humans. We found that the marine bacterium Pseudoruegeria sp. M32A2M exhibits algicidal activity against Alexandrium catenella (Group I), inhibiting its motility and consequently inducing cell disruption after 24 h of co-culture. To understand the communication between the two organisms, we investigated the time-course cellular responses through genome-wide transcriptome analysis. Functional analysis of differentially expressed genes revealed that the core reactions of the photosystem in A. catenella were inhibited within 2 h, eventually downregulating the entire pathways of oxidative phosphorylation and carbon fixation, as well as associated metabolic pathways. Conversely, Pseudoruegeria upregulated its glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation pathways. Also, the transporters for nutrients such as C3/C4 carbohydrates and peptides were highly upregulated, leading to the speculation that nutrients released by disrupted A. catenella cells affect the central metabolism of Pseudoruegeria. In addition, we analyzed the secondary metabolite-synthesizing clusters of Pseudoruegeria that were upregulated by co-culture, suggesting their potential roles in algicidal activity. Our time-course transcriptome analysis elucidates how A. catenella is affected by algicidal bacteria and how these bacteria obtain functional benefits through metabolic pathways.


2018 ◽  
Vol 59 (2) ◽  
pp. 858 ◽  
Author(s):  
Lynn Calvin Shaw ◽  
Sergio Li Calzi ◽  
Nan Li ◽  
Leni Moldovan ◽  
Nilanjana Sengupta-Caballero ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Poonam Naik ◽  
Suchita Pandey ◽  
Milind N. Naik ◽  
Dilip Kumar Mishra ◽  
Sreedhar Rao Boyenpally ◽  
...  

Multidrug-resistant (MDR) endophthalmitis is a serious threat to the whole spectrum of therapeutic procedures associated with the risk of managing and preventing vision loss. We have earlier shown the interplay of immune mediators in patients with MDR Pseudomonas aeruginosa (PA) endophthalmitis leading to worse outcome. Expanding on these findings, a murine model of endophthalmitis was developed to explore the effects of drug resistance on the pathogenesis by analyzing the temporal changes in retinal morphology along with its transcriptomic signatures. Clinical isolates of susceptible (S-PA) and multidrug-resistant PA (MDR-PA) were injected intravitreally in C57BL/6 mice followed by enucleation at 6 and 24 h time points postinfection. Disease progression and retinal changes were monitored by clinical and histological assessment and transcriptome analysis in a pair-wise manner. Histological assessment of MDR-PA eyeball revealed higher disease severity (p < 0.05), CD45+ cells (p = 0.007), MPO+ cells (p = 0.01), GFAP+ (p = 0.02), along with higher retinal cell death in mice infected with MDR-PA (p = 0.008). Temporal transcriptome analysis revealed differential expression of nearly 923 genes at 6 h p.i. and 2,220 genes at 24 h p.i. (FC ≥2, adjusted p-value <0.05). Pathway enrichment analysis identified differential regulation of chemokine- and cytokine-mediated, MAPK, and NF-кβ signaling pathways. In conclusion, rapid deterioration of retinal architecture and immune exacerbation was significantly associated with the MDR endophthalmitis, suggesting the need for immunomodulatory agents to strengthen host cell functions and support antibiotics to save the retinal structure from inevitable deterioration and restoration of the vision.


Sign in / Sign up

Export Citation Format

Share Document