scholarly journals Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yan Yu ◽  
Xiao-Dan Peng ◽  
Xiao-Jun Qian ◽  
Kai-Ming Zhang ◽  
Xiang Huang ◽  
...  

AbstractMet tyrosine kinase, a receptor for a hepatocyte growth factor (HGF), plays a critical role in tumor growth, metastasis, and drug resistance. Mitochondria are highly dynamic and undergo fission and fusion to maintain a functional mitochondrial network. Dysregulated mitochondrial dynamics are responsible for the progression and metastasis of many cancers. Here, using structured illumination microscopy (SIM) and high spatial and temporal resolution live cell imaging, we identified mitochondrial trafficking of receptor tyrosine kinase Met. The contacts between activated Met kinase and mitochondria formed dramatically, and an intact HGF/Met axis was necessary for dysregulated mitochondrial fission and cancer cell movements. Mechanically, we found that Met directly phosphorylated outer mitochondrial membrane protein Fis1 at Tyr38 (Fis1 pY38). Fis1 pY38 promoted mitochondrial fission by recruiting the mitochondrial fission GTPase dynamin-related protein-1 (Drp1) to mitochondria. Fragmented mitochondria fueled actin filament remodeling and lamellipodia or invadopodia formation to facilitate cell metastasis in hepatocellular carcinoma (HCC) cells both in vitro and in vivo. These findings reveal a novel and noncanonical pathway of Met receptor tyrosine kinase in the regulation of mitochondrial activities, which may provide a therapeutic target for metastatic HCC.

Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Bei Li ◽  
Ang Li ◽  
Zhen You ◽  
Jingchang Xu ◽  
Sha Zhu

Abstract Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Qun Dai ◽  
Jingyi Deng ◽  
Jinrong Zhou ◽  
Zhuhong Wang ◽  
Xiao-feng Yuan ◽  
...  

Abstract Background Accumulating evidence indicates that the long noncoding RNA taurine upregulated gene 1(TUG1) plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of TUG1 in hepatocellular carcinoma (HCC) remain largely unknown. Methods The expressions of TUG1, microRNA-216b-5p and distal-less homeobox 2 (DLX2) were detected by Quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships were predicted by StarBase v.2.0 or TargetScan and confirmed by dual-luciferase reporter assay. The cell growth, apoptosis, migration and invasion were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Flow cytometry and Transwell assays, respectively. All protein expression levels were detected by western blot. Tumor xenografts were implemented to explore the role of TUG1 in vivo. Results We found that there was a marked rise in TUG1 expression in HCC tissues and cells, and knockdown of TUG1 repressed the growth and metastasis and promoted apoptosis of HCC cells. In particular, TUG1 could act as a ceRNA, effectively becoming a sink for miR-216b-5p to fortify the expression of DLX2. Additionally, repression of TUG1 impared the progression of HCC cells by inhibiting DLX2 expression via sponging miR-216b-5p in vitro. More importantly, TUG1 knockdown inhibited HCC tumor growth in vivo through upregulating miR-216b-5p via inactivation of the DLX2. Conclusion TUG1 interacting with miR-216b-5p contributed to proliferation, metastasis, tumorigenesis and retarded apoptosis by activation of DLX2 in HCC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yue-Feng Sun ◽  
Hong-Li Wu ◽  
Rui-Fang Shi ◽  
Lin Chen ◽  
Chao Meng

Liver cancer is thought as the most common human malignancy worldwide, and hepatocellular carcinoma (HCC) accounts for nearly 90% liver cancer. Due to its poor early diagnosis and limited treatment, HCC has therefore become the most lethal malignant cancers in the world. Recently, molecular targeted therapies showed great promise in the treatment of HCC, and novel molecular therapeutic targets is urgently needed. KIF15 is a microtubule-dependent motor protein involved in multiple cell processes, such as cell division. Additionally, KIF15 has been reported to participate in the growth of various types of tumors; however, the relation between KIF15 and HCC is unclear. Herein, our study investigated the possible role of KIF15 on the progression of HCC and found that KIF15 has high expression in tumor samples from HCC patients. KIF15 could play a critical role in the regulation of cell proliferation of HCC, which was proved by in vitro and in vivo assays. In conclusion, this study confirmed that KIF15 could be a novel therapeutic target for the treatment of HCC.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 616-616 ◽  
Author(s):  
Deepa B. Shankar ◽  
Jenny C. Chang ◽  
Bertrand Parcells ◽  
Salemiz Sandoval ◽  
Junling Li ◽  
...  

Abstract Children with acute myeloid leukemia (AML) have less than 60% overall survival despite aggressive chemotherapy and bone marrow transplantation. Only one third of the adult patients diagnosed with AML will be cured. AML blast cells from up to 30% of patients express a constitutively active receptor tyrosine kinase, FLT3-ITD, which contains an internal tandem duplication in the juxtamembrane domain. Patients with FLT3-ITD have a worse prognosis. ABT-869 is a novel multi-targeted small molecule inhibitor of receptor tyrosine kinases and is a potent inhibitor of FLT3, c-Kit, and all members of the VEGF and PDGF receptor families. To determine the effects of ABT-896 on AML cells, we treated AML cell lines, primary cells, and tumors in xenograft models with varying concentrations of the drug. In vitro viability assays showed that ABT-869 inhibited the growth of two different cell lines, MV-4-11 (human AML cell line that expresses FLT3-ITD) and BAF3-ITD (murine B-cell line stably transfected with the FLT3-ITD) at an IC50 of 10nM. ABT-869 was also effective against another mutation of FLT3, D835V, but at higher concentrations (IC50 of 100nM). Phosphorylation of FLT3 and activation of downstream signaling molecules, STAT5 and ERK, were inhibited by ABT-869 in a concentration-dependent manner. Cells were also stained with Annexin V-FITC and Propidium Iodide, and analyzed using FACS. ABT-869 induced apoptosis, caspase-3 activation, and PARP cleavage after 48 hours. To examine the in vitro effects of ABT-869 on normal hematopoietic progenitor cells, we performed methylcellulose-based colony assays with human bone marrow. No significant difference was observed in the number and type of colonies formed using BM cells treated with ABT-869 or control, up to a concentration of 1 micromolar. These results suggest that ABT-869 is not toxic to normal bone marrow progenitor cells at concentrations that are effective against AML cells. To examine the effects of ABT-869 in vivo, we treated SCID mice injected with MV-4-11, Baf3-ITD, Baf3-D835V, or Baf3-WT cells, with oral preparations of ABT-869. Complete regression of MV-4-11 tumors was observed in mice treated with ABT-869 at 20 and 40 mg/kg/day. No adverse effects were detected in the peripheral blood counts, bone marrow, spleen or liver. Histology of the tumors from the control-treated group showed a high degree of proliferation by Ki-67 staining, increased mitotic figures, and a well-defined tumor mass. In contrast, the tumors from mice treated with ABT-869 showed a number of apoptotic bodies by TUNEL staining and the presence of reactive, inflammatory cells. Interestingly, we also observed that mice that received ABT-869 the day after injection of AML cells remained tumor-free for over 2 months in contrast to the mice receiving the vehicle alone. Inhibition of FLT3 phosphorylation was demonstrated in the tumors from mice treated with ABT-869. We are evaluating the activity of ABT-869 treatment of SCID mice injected with Baf3-ITD, Baf3-D835V, or Baf3-WT cells. NOD-SCID mouse models are currently being used to analyze the effects of ABT-869 on primary AML cells in vivo. Our preclinical studies demonstrate that ABT-869 is effective and nontoxic, and provide rationale for the treatment and prevention of relapse in AML patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3376-3376
Author(s):  
Romain Gioia ◽  
Cedric Leroy ◽  
Claire Drullion ◽  
Valérie Lagarde ◽  
Serge Roche ◽  
...  

Abstract Abstract 3376 Nilotinib has been developed to overcome resistance to imatinib, the first line treatment of chronic myeloid leukemia (CML). To anticipate resistance to nilotinib, we generate nilotinib resistant CML cell lines in vitro to characterize mechanisms and signaling pathways that may contribute to resistance. Among the different mechanisms of resistance identified, the overexpression of the Src-kinase Lyn was involved in resistance both in vitro, in a K562 cell line (K562-rn), and in vivo, in nilotinib-resistant CML patients. To characterize how Lyn mediates resistance, we performed a phosphoproteomic study using SILAC (Stable Isotope Labelling with Amino acid in Cell culture). Quantification and identification of phosphotyrosine proteins in the nilotinib resistant cells point out two tyrosine kinases, the spleen tyrosine kinase Syk and the UFO receptor Axl. The two tyrosine kinase Syk and Axl interact with Lyn as seen by coimmunopreciptation. Syk is phosphorylated on tyrosine 323 and 525/526 in Lyn dependent manner in nilotinib resistant cells. The inhibition of Syk tyrosine kinase by R406 or BAY31-6606 restores sensitivity to nilotinib in K562-rn cells. In parallel, the inhibition of Syk expression by ShRNA in K562-rn cells abolishes Lyn and Axl phosphorylation and then interaction between Lyn and Axl leading to a full restoration of nilotinib efficacy. In the opposite, the coexpression of Lyn and Syk in nilotinib sensitive K562 cells induced resistance to nilotinib whereas a Syk kinase dead mutant did not. These results highlight for the first time the critical role of Syk in resistance to tyrosine kinase inhibitors in CML disease emphasizing the therapeutic targeting of this tyrosine kinase. Moreover, Axl, which is already a target in solid tumor, will be also an interesting pathway to target in CML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1799-1799
Author(s):  
Maria Göbel ◽  
Michael Möllmann ◽  
Andre Görgens ◽  
Ulrich Dührsen ◽  
Andreas Hüttmann ◽  
...  

Abstract Abstract 1799 The receptor tyrosine kinase Axl belongs to the TAM (Tyro-3, Axl and Mer) family and is involved in the progression of several human malignancies including chronic lymphocytic leukemia (CLL), where it is has been found to be overexpressed in comparison to normal B-cells. An increasing body of evidence suggests that Axl acts as an oncogene which increases the survival, proliferation, metastatic potential and chemotherapy resistance of tumor cells. Hence, it has been recently identified as a potential therapeutic target in a wide range of tumor entities with deregulated Axl expression including prostate cancer, glioma, lung cancer and CLL. Here, we investigated two different Axl inhibitors for their potential to inhibit the migratory capacity and survival of leukemic cells in preclinical CLL models. In vitro studies: Freshly isolated PBMC (>90% CD5+CD19+) from CLL patients were incubated in serum free medium for 48h containing concentrations series of 2 different Axl inhibitors: BMS777607, a previously published inhibitor of the MET kinase family, and LDC2636, a novel inhibitor of the TAM receptor tyrosine kinase (RTK) family with high affinity to Axl. Viability of CLL cells was assessed by trypan blue staining and flow cytometry employing annexin V staining. Since a polarized phenotype is required for migration, cell polarization was analyzed by time-lapse video-microscopy. We detected cytotoxic effects in a patient dependent manner that were more prevalent in LDC2636 as compared to BMS777607 treated cells (LD50= 1.4 μM vs. 5.2 μM, p<0.004, n=5). Cell polarization of the remaining viable cells was significantly reduced in a dose dependent fashion in comparison to vehicle only controls (LDC2636 IC50 = 7.2 μM, p<0.00001; BMS777607: IC50=6.2μM; p=0.0004). Of note, both Axl inhibitors exhibited significantly weaker effects on both, the viability and cell polarization of normal PBMC over the whole concentration range tested (p<0.05, n=5). In vivo studies: To verify our hypothesis that reduced cell polarization results in decreased homing of leukemic cells in vivo we employed a recently developed adoptive transfer model of CLL. In this model NOD/SCID/gcnull(NSG) mice were pre-treated with a single intraperitoneal bolus of LDC2636 or BMS777607 (20 mg/kg) and subsequently transplanted with primary CLL cells. Both Axl inhibitors significantly reduced the homing capacity of CLL cells to the bone marrow of NSG mice by 43% and 59%, respectively, compared to vehicle treated controls (LDC2636: p=0.046, BMS777607 p=0.0077; n=3). These data demonstrate that Axl inhibitors exert potent in vitro and in vivo activity against human CLL cells, which is caused at least in part by the suppression of CLL homing to their supportive stromal niches. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Shailender S. Chauhan ◽  
Rachel K. Toth ◽  
Corbin C. Jensen ◽  
Andrea L. Casillas ◽  
David F. Kashatus ◽  
...  

AbstractResistance to chemotherapy represents a major obstacle to the successful treatment of non-small cell lung cancer (NSCLC). The goal of this study was to determine how PIM kinases impact mitochondrial dynamics, ROS production, and response to chemotherapy in lung cancer. Live cell imaging and microscopy were used to determine the effect of PIM loss or inhibition on mitochondrial phenotype and ROS. Inhibition of PIM kinases caused excessive mitochondrial fission and significant upregulation of mitochondrial superoxide, increasing intercellular ROS. Mechanistically, we define a signaling axis linking PIM1 to Drp1 and mitochondrial fission in lung cancer. PIM inhibition significantly increased the protein levels and mitochondrial localization of Drp1, causing marked fragmentation of mitochondria. An inverse correlation between PIM1 and Drp1 was confirmed in NSCLC patient samples. Inhibition of PIM sensitized NSCLC to chemotherapy and produced a synergistic anti-tumor response in vitro and in vivo. Immunohistochemistry and transmission electron microscopy verified that PIM inhibitors promote mitochondrial fission and apoptosis in vivo. These data improve our knowledge about how PIM1 regulates mitochondria and provide justification for combining PIM inhibition with chemotherapy in NSCLC.


2019 ◽  
Author(s):  
M Bayne ◽  
A Alvarsson ◽  
K Devarakonda ◽  
R Li ◽  
M Jimenez-Gonzalez ◽  
...  

AbstractHypoglycemia is a frequent complication of diabetes, limiting therapy and increasing morbidity and mortality. With recurrent hypoglycemia, the counter-regulatory response (CRR) to decreased blood glucose is blunted, resulting in hypoglycemia unawareness. The mechanisms leading to these blunted effects remain incompletely understood. Here, we identify, with in situ hybridization, immunohistochemistry and the tissue clearing capability of iDisco, that GHRH neurons represent a unique population of arcuate nucleus neurons activated by glucose deprivation in vivo. Repeated glucose deprivation reduces GHRH neuron activation and remodels excitatory and inhibitory inputs to GHRH neurons. We show low glucose sensing is coupled to GHRH neuron depolarization, decreased ATP production and mitochondrial fusion. Repeated hypoglycemia attenuates these responses during low glucose. By maintaining mitochondrial length with the small molecule, mdivi-1, we preserved hypoglycemia sensitivity in vitro and in vivo. Our findings present possible mechanisms for the blunting of the CRR, broaden significantly our understanding of the structure of GHRH neurons and for the fist time, propose that mitochondrial dynamics play an important role in hypoglycemia unawareness. We conclude that interventions targeting mitochondrial fission in GHRH neurons may offer a new pathway to prevent hypoglycemia unawareness in diabetic patients.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 904
Author(s):  
Philipp Berning ◽  
Carolin Hennemann ◽  
Claudia Tulotta ◽  
Christiane Schaefer ◽  
Birgit Lechtape ◽  
...  

The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.


Sign in / Sign up

Export Citation Format

Share Document