scholarly journals Repeated hypoglycemia blunts the responsiveness of glucose-inhibited GHRH neurons by remodeling neural inputs and disrupting mitochondrial structure and function

2019 ◽  
Author(s):  
M Bayne ◽  
A Alvarsson ◽  
K Devarakonda ◽  
R Li ◽  
M Jimenez-Gonzalez ◽  
...  

AbstractHypoglycemia is a frequent complication of diabetes, limiting therapy and increasing morbidity and mortality. With recurrent hypoglycemia, the counter-regulatory response (CRR) to decreased blood glucose is blunted, resulting in hypoglycemia unawareness. The mechanisms leading to these blunted effects remain incompletely understood. Here, we identify, with in situ hybridization, immunohistochemistry and the tissue clearing capability of iDisco, that GHRH neurons represent a unique population of arcuate nucleus neurons activated by glucose deprivation in vivo. Repeated glucose deprivation reduces GHRH neuron activation and remodels excitatory and inhibitory inputs to GHRH neurons. We show low glucose sensing is coupled to GHRH neuron depolarization, decreased ATP production and mitochondrial fusion. Repeated hypoglycemia attenuates these responses during low glucose. By maintaining mitochondrial length with the small molecule, mdivi-1, we preserved hypoglycemia sensitivity in vitro and in vivo. Our findings present possible mechanisms for the blunting of the CRR, broaden significantly our understanding of the structure of GHRH neurons and for the fist time, propose that mitochondrial dynamics play an important role in hypoglycemia unawareness. We conclude that interventions targeting mitochondrial fission in GHRH neurons may offer a new pathway to prevent hypoglycemia unawareness in diabetic patients.

Diabetologia ◽  
2021 ◽  
Author(s):  
Yukina Takeichi ◽  
Takashi Miyazawa ◽  
Shohei Sakamoto ◽  
Yuki Hanada ◽  
Lixiang Wang ◽  
...  

Abstract Aims/hypothesis Mitochondria are highly dynamic organelles continuously undergoing fission and fusion, referred to as mitochondrial dynamics, to adapt to nutritional demands. Evidence suggests that impaired mitochondrial dynamics leads to metabolic abnormalities such as non-alcoholic steatohepatitis (NASH) phenotypes. However, how mitochondrial dynamics are involved in the development of NASH is poorly understood. This study aimed to elucidate the role of mitochondrial fission factor (MFF) in the development of NASH. Methods We created mice with hepatocyte-specific deletion of MFF (MffLiKO). MffLiKO mice fed normal chow diet (NCD) or high-fat diet (HFD) were evaluated for metabolic variables and their livers were examined by histological analysis. To elucidate the mechanism of development of NASH, we examined the expression of genes related to endoplasmic reticulum (ER) stress and lipid metabolism, and the secretion of triacylglycerol (TG) using the liver and primary hepatocytes isolated from MffLiKO and control mice. Results MffLiKO mice showed aberrant mitochondrial morphologies with no obvious NASH phenotypes during NCD, while they developed full-blown NASH phenotypes in response to HFD. Expression of genes related to ER stress was markedly upregulated in the liver from MffLiKO mice. In addition, expression of genes related to hepatic TG secretion was downregulated, with reduced hepatic TG secretion in MffLiKO mice in vivo and in primary cultures of MFF-deficient hepatocytes in vitro. Furthermore, thapsigargin-induced ER stress suppressed TG secretion in primary hepatocytes isolated from control mice. Conclusions/interpretation We demonstrated that ablation of MFF in liver provoked ER stress and reduced hepatic TG secretion in vivo and in vitro. Moreover, MffLiKO mice were more susceptible to HFD-induced NASH phenotype than control mice, partly because of ER stress-induced apoptosis of hepatocytes and suppression of TG secretion from hepatocytes. This study provides evidence for the role of mitochondrial fission in the development of NASH. Graphical abstract


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Michael L. Kamradt ◽  
Ji-Ung Jung ◽  
Kathryn M. Pflug ◽  
Dong W. Lee ◽  
Victor Fanniel ◽  
...  

AbstractCancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK−/− cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


2019 ◽  
Author(s):  
Shailender S. Chauhan ◽  
Rachel K. Toth ◽  
Corbin C. Jensen ◽  
Andrea L. Casillas ◽  
David F. Kashatus ◽  
...  

AbstractResistance to chemotherapy represents a major obstacle to the successful treatment of non-small cell lung cancer (NSCLC). The goal of this study was to determine how PIM kinases impact mitochondrial dynamics, ROS production, and response to chemotherapy in lung cancer. Live cell imaging and microscopy were used to determine the effect of PIM loss or inhibition on mitochondrial phenotype and ROS. Inhibition of PIM kinases caused excessive mitochondrial fission and significant upregulation of mitochondrial superoxide, increasing intercellular ROS. Mechanistically, we define a signaling axis linking PIM1 to Drp1 and mitochondrial fission in lung cancer. PIM inhibition significantly increased the protein levels and mitochondrial localization of Drp1, causing marked fragmentation of mitochondria. An inverse correlation between PIM1 and Drp1 was confirmed in NSCLC patient samples. Inhibition of PIM sensitized NSCLC to chemotherapy and produced a synergistic anti-tumor response in vitro and in vivo. Immunohistochemistry and transmission electron microscopy verified that PIM inhibitors promote mitochondrial fission and apoptosis in vivo. These data improve our knowledge about how PIM1 regulates mitochondria and provide justification for combining PIM inhibition with chemotherapy in NSCLC.


2021 ◽  
Author(s):  
Hye Jin Shin ◽  
Keun Bon Ku ◽  
Gun Young Yoon ◽  
Hyun-Woo Moon ◽  
Chonsaeng Kim ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a respiratory pathogen leading to serious multi-organ damage. However, little is known about SARS-CoV-2-induced cellular alterations for understanding robust virus propagation yet. Here we report that SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics and activates epidermal growth factor receptor (EGFR)-mediated cell survival signal cascade for sustaining persistence of SARS-CoV-2. We found that SARS-CoV-2 causes increase in mitochondrial transmembrane potential by SARS-CoV-2 RNA-nucleocapsid cluster, thereby abnormally promoting mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) process followed by abundant ATP production. SARS-CoV-2 also activated EGFR signal cascade and subsequent mitochondrial EGFR accumulation which contributes to the maintenance of abnormal OXPHOS and viral propagation. Therapeutic options for the treatment of COVID-19 are still inadequate. The FDA-approved EGFR inhibitors caused a remarkable reduction in SARS-CoV-2 propagation. Among EGFR inhibitors, vandetanib showing the highest anti-SARS-CoV-2 efficacy exhibited the potent antiviral activity against various SARS-CoV-2 variants including B.1.1.7 (UK variant) and B.1.351 (SA variant) lineages in both in vitro cell culture and in vivo animal experiments using wild-type aged mouse susceptible to SARS-CoV-2 infection, suggesting that EGFR is an attractive host target for combatting COVID-19. Overall, our results suggest that SARS-CoV-2 induces aberrant mitochondrial dynamics and bioenergetics, which significantly contributes to robust SARS-CoV-2 propagation.


2015 ◽  
Vol 35 (5) ◽  
pp. 851-860 ◽  
Author(s):  
Alberto Julio-Amilpas ◽  
Teresa Montiel ◽  
Eva Soto-Tinoco ◽  
Cristian Gerónimo-Olvera ◽  
Lourdes Massieu

Glucose is the main energy substrate in brain but in certain circumstances such as prolonged fasting and the suckling period alternative substrates can be used such as the ketone bodies (KB), beta-hydroxybutyrate (BHB), and acetoacetate. It has been shown that KB prevent neuronal death induced during energy limiting conditions and excitotoxicity. The protective effect of KB has been mainly attributed to the improvement of mitochondrial function. In the present study, we have investigated the protective effect of D-BHB against neuronal death induced by severe noncoma hypoglycemia in the rat in vivo and by glucose deprivation (GD) in cortical cultures. Results show that systemic administration of D-BHB reduces reactive oxygen species (ROS) production in distinct cortical areas and subregions of the hippocampus and efficiently prevents neuronal death in the cortex of hypoglycemic animals. In vitro results show that D-BHB stimulates ATP production and reduces ROS levels, while the nonphysiologic isomer of BHB, L-BHB, has no effect on energy production but reduces ROS levels. Data suggest that protection by BHB, not only results from its metabolic action but is also related to its capability to reduce ROS, rendering this KB as a suitable candidate for the treatment of ischemic and traumatic injury.


2016 ◽  
Vol 37 (2) ◽  
pp. 514-527 ◽  
Author(s):  
Naomi L Sayre ◽  
Mikaela Sifuentes ◽  
Deborah Holstein ◽  
Sheue-yann Cheng ◽  
Xuguang Zhu ◽  
...  

We previously demonstrated that stimulation of astrocyte mitochondrial ATP production via P2Y1 receptor agonists was neuroprotective after cerebral ischemic stroke. Another mechanism that increases ATP production is fatty acid oxidation (FAO). We show that in primary human astrocytes, FAO and ATP production are stimulated by 3,3,5 triiodo-l-thyronine (T3). We tested whether T3-stimulated FAO enhances neuroprotection, and show that T3 increased astrocyte survival after either hydrogen peroxide exposure or oxygen glucose deprivation. T3-mediated ATP production and protection were both eliminated with etomoxir, an inhibitor of FAO. T3-mediated protection in vitro was also dependent on astrocytes expressing HADHA (hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase), which we previously showed was critical for T3-mediated FAO in fibroblasts. Consistent with previous reports, T3-treatment decreased stroke volumes in mice. While T3 decreased stroke volume in etomoxir-treated mice, T3 had no protective effect on stroke volume in HADHA +/− mice or in mice unable to upregulate astrocyte-specific energy production. In vivo, 95% of HADHA co-localize with glial-fibrillary acidic protein, suggesting the effect of HADHA is astrocyte mediated. These results suggest that astrocyte-FAO modulates lesion size and is required for T3-mediated neuroprotection post-stroke. To our knowledge, this is the first report of a neuroprotective role for FAO in the brain.


2021 ◽  
Vol 22 (11) ◽  
pp. 5693
Author(s):  
Isidora M. Starovlah ◽  
Sava M. Radovic Pletikosic ◽  
Tatjana S. Kostic ◽  
Silvana A. Andric

Here, we study possible mechanisms of (in/sub)fertility related to the acute or repeated psychological stresses (the most common stresses in human society) by following the transcriptional profile of 22 mitochondrial dynamics/function markers and 22 signaling molecules regulating both mitochondrial dynamics and spermatozoa number/functionality. An in vivo study mimicking acute (once for 3 h) and repeated (3 h for 10 consecutive days) psychophysical stress was performed on adult rats. The analysis of hormones, the number/functionality of spermatozoa, and 44 transcriptional markers were performed on individual samples from up to 12 animals per group. Results showed that both types of stress reduced spermatozoa functionality (acute by 4.4-fold, repeated by 3.3-fold) and ATP production (acute by 2.3-fold, repeated by 14.5-fold), while only repeated stress reduces the number of spermatozoa (1.9-fold). Stress significantly disturbed transcription of 34-out-of-44 markers (77%). Mitochondrial dynamics and functionality markers: 18-out-of-22 =>82% (mitochondrial-biogenesis-markers –>6-out-of-8 =>75%; mitochondrial-fusion-markers –>3-out-of-3 =>100%; mitochondrial-fission-markers –>1-out-of-2 =>50%; mitochondrial-autophagy-markers –>3-out-of-3 =>100%; mitochondrial-functionality-markers –>5-out-of-6 =>83%). Markers of signaling pathways regulating both mitochondrial dynamics/functionality and spermatozoa number/functionality important for male (in/sub)fertility –>16-out-of-22 =>73% (cAMP-signaling-markers –>8-out-of-12 =>67%; MAPK-signaling-markers –>8-out-of-10 =>80%). Accordingly, stress-triggered changes of transcriptional profile of mitochondrial dynamics/functionality markers as well as signaling molecules regulating both mitochondrial dynamics and spermatozoa number and functionality represent adaptive mechanisms.


Author(s):  
Chun Guo ◽  
Keri L. Hildick ◽  
Juwei Jiang ◽  
Alice Zhao ◽  
Wenbin Guo ◽  
...  

Dysregulation of the mitochondrial fission machinery has been linked to cell death following ischemia. Fission is largely dependent on recruitment of Dynamin-related protein 1 (Drp1) to the receptor Mitochondrial fission factor (Mff) located on the mitochondrial outer membrane (MOM). Drp1 is a target for SUMOylation and its deSUMOylation, mediated by the SUMO protease SENP3, enhances the Drp1-Mff interaction to promote cell death in an oxygen/glucose deprivation (OGD) model of ischemia. Another interacting partner for Drp1 is the Bcl-2 family member Bcl-xL, an important protein in cell death and survival pathways. Here we demonstrate that preventing Drp1 SUMOylation by mutating its SUMO target lysines enhances the Drp1-Bcl-xL interaction in vivo and in vitro. Moreover, SENP3-mediated deSUMOylation of Drp1 promotes the Drp1-Bcl-xL interaction. Our data suggest that Mff primes Drp1 binding to Bcl-xL at the mitochondria and that Mff and Bcl-xL can interact directly, independent of Drp1, through their transmembrane domains. Importantly, SENP3 loss in cells subjected to OGD correlates with reduced Drp1-Bcl-xL interaction, whilst recovery of SENP3 levels in cells subjected to reoxygenation following OGD correlates with increased Drp1-Bcl-xL interaction. Expressing a Bcl-xL mutant with defective Drp1 binding reduces OGD plus reoxygenation-evoked cell death. Taken together, our results indicate that SENP3-mediated deSUMOlyation promotes an Mff-primed Drp1-Bcl-xL interaction that contributes to cell death following ischemia.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Yoshiyuki Ikeda ◽  
Yasuhiro Maejima ◽  
Mitsuru Ohishi ◽  
Junichi Sadoshima

Mitochondria are dynamic organelles that undergo fusion and fission. This study aims to clarify the role of mitochondrial dynamics on energetic stress resistance in cardiomyocytes (CMs). Dynamin-related protein 1 (Drp-1) which mediates mitochondrial fission was localized primarily in the cytosol in CMs. Glucose deprivation (GD) induced modest mitochondrial accumulation of Drp1 in CMs within 4 hours. Four-hour GD increased the proportion of CMs with fused mitochondria (23.5±6.9 to 35.0±10.8%, p<0.05), but also increased that of CMs with fission (2.1±0.3 to 15.5±4.8%, p<0.05) in Ad-shScr-transduced CMs, whereas mitochondria with fission did not increase after GD in Ad-shDrp1-transduced CMs (0.3±0.6 to 0.8±0.5%). These results suggest that GD induces both mitochondrial fusion and fission, and Drp1 plays an essential role in mitochondrial fission in response to GD. Transduction with Ad-shDrp1 significantly increased TUNEL-positive CMs and reduced cell viability after 4 hours of GD compared to transduction with Ad-shScr, suggesting that endogenous Drp1 protects CMs against cell death during GD. We evaluated the role of Drp1 in mediating mitophagy using mitochondria-targeted Keima fluorescence. Keima has a bimodal excitation spectrum peaking at 440 and 560 nm, corresponding to the neutral and acidic pH states, respectively. Puncta with high 560/440, indicating the presence of mitochondria in lysosomes, were significantly increased after 4 hours of GD in CMs transduced with Ad-shScr, but not in CMs transduced with Ad-shDrp, suggesting that Drp1 is necessary for stimulating autophagic mitochondrial degradation. Next, we examined the role of fission on energy stress in vivo using cardiac specific Drp1 hetero knockout (Drp1-hetCKO) mouse. Translocation of Drp1 from cytosol to mitochondria significantly increased in response to 48-hour fasting in control mice but not in Drp1-hetCKO mice. Left ventricular ejection fraction did not change after fasting in control mice (79.8±6.4 to 78.6±8.3%). However that in Drp1-hetCKO mice decreased after GD (79.4±9.7 to 48.3±11.6%, p<0.05), suggesting that Drp1 acts to preserve cardiac function during fasting. In conclusion, mitochondrial fission is crucial to adapt CMs to energy stress through mitophagy.


Author(s):  
Kun Wu ◽  
Yuan-yuan Mao ◽  
Qi Chen ◽  
Bolin Zhang ◽  
Sheng Zhang ◽  
...  

Chemotherapy treatment based on Cisplatin (CDDP) is established as the drug of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironment alteration through a dynamic balance of mitochondrial fission and fusion. HNSCC is known to have hypoxic conditions, yet the effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain unclear. We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was shown to be correlated with chemosensitivity in clinical samples of HNSCC that underwent a hypoxic condition. Hypoxia-inducible factor 1 &alpha;-subunit (HIF-1&alpha;) dramatically increased Mff transcriptional expression and directly bound to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1&alpha; in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1&alpha;, Mff expression, and mitochondrial fission. Moreover, a knockdown of Mff suppressed hypoxia-induced mitochondrial fission and decreased CDDP chemosensitivity in vivo and in vitro. Our findings revealed that the hypoxia-induced release of ROS promoted mitochondrial fission and CDDP chemosensitivity via the regulation of HIF-1&alpha;/Mff in HNSCC cells, indicating that Mff may serve as a new biomarker to predict neoadjuvant chemosensitivity in HNSCC patients


Sign in / Sign up

Export Citation Format

Share Document