molecular therapeutic targets
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 20)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Rachael Wood ◽  

Pediatric osteosarcoma tumors are characterized by an unusual abundance of grossly dilated endoplasmic reticulum and an immense genomic instability that has complicated identifying new effective molecular therapeutic targets. Here we report a novel molecular signature that encompasses the majority of 108 patient tumor samples, PDXs and osteosarcoma cell lines. These tumors exhibit reduced expression of four critical COPII vesicle proteins that has resulted in the accumulation of procollagen-I protein within ‘hallmark’ dilated ER. Using CRISPR activation technology, increased expression of only SAR1A and SEC24D to physiologically normal levels was sufficient to restore both collagen-I secretion and resolve dilated ER morphology to normal.


2021 ◽  
Author(s):  
Yi Li ◽  
Ke Pu ◽  
Yuping Wang ◽  
Yongning Zhou

Abstract BackgroundGastric cancer (GC) is one of the leading cancers associated with high mortality and poor prognosis mainly due to its relatively late diagnosis and the limited therapeutic options. Consequently, screening for prognostic GC biomarkers and novel molecular therapeutic targets is necessary to promote patient outcomes. Methods Weighted gene co-expression network analysis (WGCNA), a systems biology approach, was applied to analyze the mRNA sequencing data and clinical information of GC patients obtained from The Cancer Genome Atlas (TCGA). Gene modules and clinical traits were constructed according to the Pearson correlation analysis, and the gene ontology (GO) and functional enrichment analysis of meaningful modules were carried out. Hub genes from meaningful modules were screened out by two approaches: the intra-modular and protein-protein interaction (PPI) analysis methods. Next, through upstream regulatory analysis, hub genes with high connectivity degree were further validated with differential expression analysis, Kaplan-Meier survival analysis, and the Cox regression model. ResultsWe found that seven modules were associated with the following clinical traits: anatomical location of gastric adenocarcinoma, histological type, histological grade, and pathological stage. The hub gene ALDH1B1 was found to have potential as a biomarker for gastric cancer cells, the relationship between this hub gene and gastric cancer drug treatment is also worthy of attention.Conclusion These findings may contribute to understanding the GC tumourigenic mechanisms, as well as provide new potential prognostic factors and molecular therapeutic targets for GC. The ALDH1B1 hub gene also provides a new vantage point for further clinical experiments and large-scale cohort studies to validate its association with GC patient survival, and provide a new direction for the research of gastric cancer drug treatment.


Author(s):  
Dahua Xu ◽  
Liqiang Wang ◽  
Sainan Pang ◽  
Meng Cao ◽  
Wenxiang Wang ◽  
...  

Numerous studies have demonstrated that lncRNAs could compete with other RNAs to bind miRNAs, as competing endogenous RNAs (ceRNAs), to regulate each other. On the other hand, ceRNAs were found to be recurrently dysregulated in cancer status. However, limited studies considered the upstream epigenetic regulatory factors that disrupted the normal competing mechanism. In the present study, we constructed the lncRNA-associated dysregulated ceRNA networks across eight cancer types. lncRNAs in the individual dysregulated network and pan-cancer core dysregulated ceRNA subnetwork were found to play more important roles than mRNAs. Integrating lncRNA methylation profiles, we identified 49 epigenetically related (ER) lncRNAs involved in the dysregulated ceRNA networks, including 18 epigenetically activated (EA) lncRNAs, 18 epigenetically silenced (ES) lncRNAs, and 13 rewired ER lncRNAs across eight cancer types. Furthermore, we evaluated the epigenetic regulating patterns of these lncRNAs and screened nine pan-cancer ER lncRNAs (six EA and three ES lncRNAs). The nine lncRNAs were found to regulate the cancer hallmarks by competing with mRNAs. Moreover, we found that integrating the expression and methylation profiles of the nine lncRNAs could predict cancer incidence in eight cancer types robustly and the cancer outcome of several cancer types. These results provide an improved understanding of methylation regulation to ceRNA and offer novel potential molecular therapeutic targets for the diagnosis and prognosis across different cancer types.


2021 ◽  
Author(s):  
Yin-Ju Chen ◽  
Joseph T Chang ◽  
Guo-Rung You ◽  
Chun-Yu Huang ◽  
Kang-Hsing Fan ◽  
...  

Aim: Cell invasion leading to metastasis is a major cause of treatment failure in head–neck cancers (HNCs). Identifying prognostic molecules associated with invasiveness is imperative for clinical applications. Materials & methods: A systemic approach was used to globally survey invasion-related genes, including transcriptomic profiling, pathway analysis, data mining and prognostic assessment using TCGA-HNSC dataset. Results: Six functional pathways and six hub molecules (LAMA3, LAMC2, THBS1, IGF1R, PDGFB and TGFβ1) were identified that significantly contributed to cell invasion, leading to poor survival in HNC patients. Combinations of multiple biomarkers substantially increased the probability of accurately predicting prognosis. Conclusion: Our six defined invasion-related molecules may be used as a panel signature in precision medicine for prognostic indicators or molecular therapeutic targets for HNC.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaoyun He ◽  
Gaoyan Kuang ◽  
Yi Zuo ◽  
Shuangxi Li ◽  
Suxian Zhou ◽  
...  

Diabetic nephropathy (DN) is one of the main complications of diabetes and the main cause of diabetic end-stage renal disease, which is often fatal. DN is usually characterized by progressive renal interstitial fibrosis, which is closely related to the excessive accumulation of extracellular matrix and oxidative stress. Non-coding RNAs (ncRNAs) are RNA molecules expressed in eukaryotic cells that are not translated into proteins. They are widely involved in the regulation of biological processes, such as, chromatin remodeling, transcription, post-transcriptional modification, and signal transduction. Recent studies have shown that ncRNAs play an important role in the occurrence and development of DN and participate in the regulation of oxidative stress in DN. This review clarifies the functions and mechanisms of ncRNAs in DN-related oxidative stress, providing valuable insights into the prevention, early diagnosis, and molecular therapeutic targets of DN.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zhongbo Du ◽  
Luo Li ◽  
Wei Sun ◽  
Pingyu Zhu ◽  
Shulin Cheng ◽  
...  

The treatment of castration-resistant prostate cancer (CRPC) remains challenging due to the failure of androgen deprivation therapy (ADT); hence the search for other molecular therapeutic targets besides androgen receptor signaling is ongoing. This study systematically investigated the expression of SOX17 and Notch receptors in CRPC tissues and cells in vitro, showing that consistent clinical CRPC, SOX17/Notch1, and Notch4 were responsible for enzalutamide resistance in CRPC cells. The γ secretase inhibitors, BMS-708163, GSI-IX, PF-3084014, and RO4929097 abrogated the enzalutamide resistance by inhibiting Notch1 or/and Notch4 in vitro, with GSI-IX and RO4929097 being more effective than BMS-708163 and PF-3084014 in reliving bone metastasis in vivo. In conclusion, the Notch1 and Notch4 inhibitors GSI-IX and RO4929097 are promising therapeutic agents for the treatment of CRPC.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Oana M. Aburel ◽  
Ioana Z. Pavel ◽  
Maria D. Dănilă ◽  
Theia Lelcu ◽  
Alexandra Roi ◽  
...  

Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry, phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory, antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial bioenergetics, and glycolysis in human HaCaT keratinocytes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ren-Yu Zhang ◽  
Ze-Kun Liu ◽  
Ding Wei ◽  
Yu-Le Yong ◽  
Peng Lin ◽  
...  

AbstractGenomic sequencing analysis of tumors provides potential molecular therapeutic targets for precision medicine. However, identifying a key driver gene or mutation that can be used for hepatocellular carcinoma (HCC) treatment remains difficult. Here, we performed whole-exome sequencing on genomic DNA obtained from six pairs of HCC and adjacent tissues and identified two novel somatic mutations of UBE2S (p. Gly57Ala and p. Lys63Asn). Predictions of the functional effects of the mutations showed that two amino-acid substitutions were potentially deleterious. Further, we observed that wild-type UBE2S, especially in the nucleus, was significantly higher in HCC tissues than that in adjacent tissues and closely related to the clinicopathological features of patients with HCC. Functional assays revealed that overexpression of UBE2S promoted the proliferation, invasion, metastasis, and G1/S phase transition of HCC cells in vitro, and promoted the tumor growth significantly in vivo. Mechanistically, UBE2S interacted with TRIM28 in the nucleus, both together enhanced the ubiquitination of p27 to facilitate its degradation and cell cycle progression. Most importantly, the small-molecule cephalomannine was found by a luciferase-based sensitive high-throughput screen (HTS) to inhibit UBE2S expression and significantly attenuate HCC progression in vitro and in vivo, which may represent a promising strategy for HCC therapy.


2021 ◽  
Vol 16 (1) ◽  
pp. 728-736
Author(s):  
Xiao-rong Zhang ◽  
Jian-li Shao ◽  
Heng Li ◽  
Liang Wang

Abstract Osteosarcoma is the most common type of primary malignant tumor of the bone, with a high metastatic rate and poor prognosis. Therefore, it is important to further elucidate the molecular mechanisms involved in the development of osteosarcoma and explore new molecular therapeutic targets. Long intergenic nonprotein-coding RNA 707 (LINC00707) is an oncogenic gene in several cancers. In this study, we further clarified its role and regulatory mechanism in osteosarcoma. We found that LINC00707 levels are significantly higher in the osteosarcoma cell lines SW 1353, HOS, U-2 OS, MG-63, and Saos-2 compared to those in human fetal osteoblastic cell line hFOB1.19. LINC00707 silencing suppressed cell proliferation, migration, and invasion of MG-63 and Saos-2 cells. Moreover, LINC00707 can act as a competitive endogenous RNA of miR-338-3p, and miR-338-3p inhibitor and AHSA1 overexpression alleviated the effect of LINC00707 silencing. In conclusion, we demonstrated high expression of LINC00707 in osteosarcoma cell lines and that silencing LINC00707 suppresses cell proliferation, migration, and invasion by targeting the miR-338-3p/AHSA1 axis in MG-63 and Saos-2 cells. These findings suggest that LINC00707 may serve as a potential target for osteosarcoma treatment.


Sign in / Sign up

Export Citation Format

Share Document