scholarly journals Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chuang Guo ◽  
Pengfei Cai ◽  
Liying Jin ◽  
Qing Sha ◽  
Qiaoni Yu ◽  
...  

AbstractMaintaining homeostasis of the decidual immune microenvironment at the maternal–fetal interface is essential for placentation and reproductive success. Although distinct decidual immune cell subpopulations have been identified under normal conditions, systematic understanding of the spectrum and heterogeneity of leukocytes under recurrent miscarriage in human deciduas remains unclear. To address this, we profiled the respective transcriptomes of 18,646 primary human decidual immune cells isolated from patients with recurrent pregnancy loss (RPL) and healthy controls at single-cell resolution. We discovered dramatic differential distributions of immune cell subsets in RPL patients compared with the normal decidual immune microenvironment. Furthermore, we found a subset of decidual natural killer (NK) cells that support embryo growth were diminished in proportion due to abnormal NK cell development in RPL patients. We also elucidated the altered cellular interactions between the decidual immune cell subsets in the microenvironment and those of the immune cells with stromal cells and extravillous trophoblast under disease state. These results provided deeper insights into the RPL decidual immune microenvironment disorder that are potentially applicable to improve the diagnosis and therapeutics of this disease.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Guohe Song ◽  
Yang Shi ◽  
Meiying Zhang ◽  
Shyamal Goswami ◽  
Saifullah Afridi ◽  
...  

AbstractDiverse immune cells in the tumor microenvironment form a complex ecosystem, but our knowledge of their heterogeneity and dynamics within hepatocellular carcinoma (HCC) still remains limited. To assess the plasticity and phenotypes of immune cells within HBV/HCV-related HCC microenvironment at single-cell level, we performed single-cell RNA sequencing on 41,698 immune cells from seven pairs of HBV/HCV-related HCC tumors and non-tumor liver tissues. We combined bio-informatic analyses, flow cytometry, and multiplex immunohistochemistry to assess the heterogeneity of different immune cell subsets in functional characteristics, transcriptional regulation, phenotypic switching, and interactions. We identified 29 immune cell subsets of myeloid cells, NK cells, and lymphocytes with unique transcriptomic profiles in HCC. A highly complex immunological network was shaped by diverse immune cell subsets that can transit among different states and mutually interact. Notably, we identified a subset of M2 macrophage with high expression of CCL18 and transcription factor CREM that was enriched in advanced HCC patients, and potentially participated in tumor progression. We also detected a new subset of activated CD8+ T cells highly expressing XCL1 that correlated with better patient survival rates. Meanwhile, distinct transcriptomic signatures, cytotoxic phenotypes, and evolution trajectory of effector CD8+ T cells from early-stage to advanced HCC were also identified. Our study provides insight into the immune microenvironment in HBV/HCV-related HCC and highlights novel macrophage and T-cell subsets that could be further exploited in future immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Liu ◽  
Xin-Xiu Lin ◽  
Xiao-Bo Huang ◽  
Dong-Hui Huang ◽  
Su Song ◽  
...  

Recurrent pregnancy loss (RPL) is a disturbing disease in women, and 50% of RPL is reported to be associated with immune dysfunction. Most previous studies of RPL focused mainly on the relationship between RPL and either T cells or natural killer (NK) cells in peripheral blood and the decidua; few studies presented the systemic profiles of the peripheral immune cell subsets in RPL women. Herein, we simultaneously detected 63 immune cell phenotypes in the peripheral blood from nonpregnant women (NPW), women with a history of normal pregnancy (NP) and women with a history of RPL (RPL) by multi-parameter flow cytometry. The results demonstrated that the percentages of naïve CD4+ T cells, central memory CD4+ T cells, naïve CD8+ T cells, mature NK cells, Vδ1+ T cells and the ratio of Vδ1+ T cells/Vδ2+ T cells were significantly higher in the RPL group than those in the NPW and NP groups, whereas the percentages of terminal differentiated CD4+ T cells, effective memory CD4+ T cells, immature NK cells and Vδ2+ T cells were significantly lower in the RPL group than those in the NPW and NP groups. Interestingly, we found that peripheral T helper (TPH) cells were more abundant in the NPW group than in the NP and RPL groups. Moreover, the percentage of Vδ2+PD-1+ gamma-delta (γδ) T cells was extremely high, above the 95th percentile limit, in the NP group compared with the NPW and RPL groups, which has never been reported before. In addition, we also determined the 5th percentile lower limit and 95th percentile upper limit of the significantly changed immunological parameters based on the files of the NPW group. Taken together, this is the first study to simultaneously characterize the multiple immune cell subsets in the peripheral blood at a relatively large scale in RPL, which might provide a global readout of the immune status for clinicians to identify clinically-relevant immune disorders and guide them to make clear and individualized advice and treatment plans.


2019 ◽  
Author(s):  
Si Qiu ◽  
Ruoxi Hong ◽  
Zhenkun Zhuang ◽  
Yuan Li ◽  
Linnan Zhu ◽  
...  

ABSTRACTTriple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype, which recently attracts great interest for immune therapeutic development. In this context, in-depth understanding of TNBC immune landscape is highly demanded. Here we report single-cell RNA sequencing results of 9683 tumor-infiltrated immune cells isolated from 14 treatment naïve TNBC tumors, where 22 immune cell subsets, including T cells, macrophages, B cells, and DCs have been characterized. We identify a new T cell subset, CD8+CXCL8+ naïve T cell, which associates with poor survival. A novel immune cell subset comprised of TCR+ macrophages, is found to be widely distributed in TNBC tumors. Further analyses reveal an up-regulation of molecules associated with TCR signaling and cytotoxicity in these immune cells, indicating TCR signaling activation. Altogether, our study provides a valuable resource to understand the immune ecosystem of TNBC. The novel immune cell subsets reported herein might be functionally important in cancer immunity.SIGNIFICANCEThis work demonstrates a single-cell transcriptome atlas of immune cells in treatment naïve TNBC tumors, revealing novel immune cell subsets. This study provides a valuable resource to understand the immune ecosystem of TNBC, which will be helpful for the immunotherapeutic strategy design of TNBC.


2020 ◽  
Author(s):  
Si Qiu ◽  
Ruoxi Hong ◽  
Zhenkun Zhuang ◽  
Linnan Zhu ◽  
Yuan Li ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype, which recently attracts great interest for immune therapeutic development. In this context, in-depth understanding of TNBC immune landscape is highly demanded.Results: Here we report full-length single-cell RNA sequencing results of 9683 tumor-infiltrated immune cells isolated from 14 treatment naïve TNBC tumors, where 22 immune cell subsets, including T cells, macrophages, B cells, and DCs have been characterized. We identify a new T cell subset, CD8+CXCL8+ T cell, which associates with poor survival, and a subset of “pre-exhaustion” T cell cluster, which is predictive of favorable prognosis. A novel immune cell subset comprised of TCR+ macrophages, is found to be widely distributed in TNBC tumors. Further analyses reveal an up-regulation of molecules associated with TCR signaling and cytotoxicity in these immune cells.Conclusions: Altogether, our study provides a valuable resource to understand the immune ecosystem of TNBC. The novel immune cell subsets reported herein might be functionally important in cancer immunity. These data will be helpful for the immunotherapeutic strategy design of this disease.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2169
Author(s):  
Georgia Karpathiou ◽  
Maroa Dridi ◽  
Lila Krebs-Drouot ◽  
François Vassal ◽  
Emmanuel Jouanneau ◽  
...  

Chordomas are notably resistant to chemotherapy. One of the cytoprotective mechanisms implicated in chemoresistance is autophagy. There are indirect data that autophagy could be implicated in chordomas, but its presence has not been studied in chordoma tissues. Sixty-one (61) chordomas were immunohistochemically studied for autophagic markers and their expression was compared with the expression in notochords, clinicopathological data, as well as the tumor immune microenvironment. All chordomas strongly and diffusely expressed cytoplasmic p62 (sequestosome 1, SQSTM1/p62), whereas 16 (26.2%) tumors also showed nuclear p62 expression. LC3B (Microtubule-associated protein 1A/1B-light chain 3B) tumor cell expression was found in 44 (72.1%) tumors. Autophagy-related 16‑like 1 (ATG16L1) was also expressed by most tumors. All tumors expressed mannose-6-phosphate/insulin-like growth factor 2 receptor (M6PR/IGF2R). LC3B tumor cell expression was negatively associated with tumor size, while no other parameters, such as age, sex, localization, or survival, were associated with the immunohistochemical factors studied. LC3B immune cell expression showed a significant positive association with programmed death-ligand 1 (PD-L1)+ immune cells and with a higher vascular density. ATG16L1 expression was also positively associated with higher vascular density. Notochords (n = 5) showed different immunostaining with a very weak LC3B and M6PR expression, and no p62 expression. In contrast to normal notochords, autophagic factors such as LC3B and ATG16L1 are often present in chordomas, associated with a strong and diffuse expression of p62, suggesting a blocked autophagic flow. Furthermore, PD-L1+ immune cells also express LC3B, suggesting the need for further investigations between autophagy and the immune microenvironment.


Bone Research ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Weimin Lin ◽  
Qiwen Li ◽  
Danting Zhang ◽  
Xiaohan Zhang ◽  
Xingying Qi ◽  
...  

AbstractAlveolar bone is the thickened ridge of jaw bone that supports teeth. It is subject to constant occlusal force and pathogens invasion, and is therefore under active bone remodeling and immunomodulation. Alveolar bone holds a distinct niche from long bone considering their different developmental origin and postnatal remodeling pattern. However, a systematic explanation of alveolar bone at single-cell level is still lacking. Here, we construct a single-cell atlas of mouse mandibular alveolar bone through single-cell RNA sequencing (scRNA-seq). A more active immune microenvironment is identified in alveolar bone, with a higher proportion of mature immune cells than in long bone. Among all immune cell populations, the monocyte/macrophage subpopulation most actively interacts with mesenchymal stem cells (MSCs) subpopulation. Alveolar bone monocytes/macrophages express a higher level of Oncostatin M (Osm) compared to long bone, which promotes osteogenic differentiation and inhibits adipogenic differentiation of MSCs. In summary, our study reveals a unique immune microenvironment of alveolar bone, which may provide a more precise immune-modulatory target for therapeutic treatment of oral diseases.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2021 ◽  
Author(s):  
Anthony Z Wang ◽  
Jay Bowman-Kirigin ◽  
Rupen Desai ◽  
Pujan Patel ◽  
Bhuvic Patel ◽  
...  

Recent investigation of the meninges, specifically the dura layer, has highlighted its importance in CNS immune surveillance beyond a purely structural role. However, most of our understanding of the meninges stems from the use of pre-clinical models rather than human samples. In this study, we use single cell RNA-sequencing to perform the first characterization of both non-tumor-associated human dura and meningioma samples. First, we reveal a complex immune microenvironment in human dura that is transcriptionally distinct from that of meningioma. In addition, through T cell receptor sequencing, we show significant TCR overlap between matched dura and meningioma samples. We also identify a functionally heterogeneous population of non-immune cell types and report copy-number variant heterogeneity within our meningioma samples. Our comprehensive investigation of both the immune and non-immune cell landscapes of human dura and meningioma at a single cell resolution provide new insight into previously uncharacterized roles of human dura.


Sign in / Sign up

Export Citation Format

Share Document