scholarly journals Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Edgar Sierra-Orozco ◽  
Reza Shekasteband ◽  
Eudald Illa-Berenguer ◽  
Ashley Snouffer ◽  
Esther van der Knaap ◽  
...  

AbstractWithin large-fruited germplasm, fruit size is influenced by flat and globe shapes. Whereas flat fruits are smaller and retain better marketability, globe fruits are larger and more prone to cuticle disorders. Commercial hybrids are often developed from crosses between flat and globe shaped parents because flat shape is thought to be dominant and fruit size intermediate. The objectives of this study were to determine the genetic basis of flat/globe fruit shape in large-fruited fresh-market tomato germplasm and to characterize its effects on several fruit traits. Twenty-three advanced single plant selections from the Fla. 8000 × Fla. 8111B cross were selectively genotyped using a genome-wide SNP array, and inclusive composite interval mapping identified a single locus on the upper arm of chromosome 12 associated with shape, which we termed globe. A 238-plant F2 population and 69 recombinant inbred lines for this region from the same parents delimited globe to approximately 392-kilobases. A germplasm survey representing materials from multiple breeding programs demonstrated that the locus explains the flat/globe shape broadly. A single base insertion in an exon of Solyc12g006860, a gene annotated as a brassinosteroid hydroxylase, segregated completely with shape in all populations tested. CRISPR/Cas9 knock out plants confirmed this gene as underlying the globe locus. In silico analysis of the mutant allele of GLOBE among 595 wild and domesticated accessions suggested that the allele arose very late in the domestication process. Fruit measurements in three genetic backgrounds evidenced that globe impacts fruit size and several fruit shape attributes, pedicel length/width, and susceptibility of fruit to weather check. The mutant allele of GLOBE appears mostly recessive for all traits except fruit size where it acts additively.

Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 283-294 ◽  
Author(s):  
Kristie Ashton ◽  
Ana Patricia Wagoner ◽  
Roland Carrillo ◽  
Greg Gibson

AbstractDrosophila melanogaster appears to be well suited as a model organism for quantitative pharmacogenetic analysis. A genome-wide deficiency screen for haploinsufficient effects on prepupal heart rate identified nine regions of the genome that significantly reduce (five deficiencies) or increase (four deficiencies) heart rate across a range of genetic backgrounds. Candidate genes include several neurotransmitter receptor loci, particularly monoamine receptors, consistent with results of prior pharmacological manipulations of heart rate, as well as genes associated with paralytic phenotypes. Significant genetic variation is also shown to exist for a suite of four autonomic behaviors that are exhibited spontaneously upon decapitation, namely, grooming, grasping, righting, and quivering. Overall activity levels are increased by application of particular concentrations of the drugs octopamine and nicotine, but due to high environmental variance both within and among replicate vials, the significance of genetic variation among wild-type lines for response to the drugs is difficult to establish. An interval mapping design was also used to map two or three QTL for each behavioral trait in a set of recombinant inbred lines derived from the laboratory stocks Oregon-R and 2b.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1117
Author(s):  
Pragya Adhikari ◽  
James McNellie ◽  
Dilip R. Panthee

Tomato (Solanum lycopersicum L.) is the second most-consumed vegetable in the world. The market value and culinary purpose of tomato are often determined by fruit size and shape, which makes the genetic improvement of these traits a priority for tomato breeders. The main objective of the study was to detect quantitative trait loci (QTL) associated with the tomato fruit shape and size. The use of elite breeding materials in the genetic mapping studies will facilitate the detection of genetic loci of direct relevance to breeders. We performed QTL analysis in an intra-specific population of tomato developed from a cross between two elite breeding lines NC 30P × NC-22L-1(2008) consisting of 110 recombinant inbred lines (RIL). The precision software Tomato Analyzer (TA) was used to measure fruit morphology attributes associated with fruit shape and size traits. The RIL population was genotyped with the SolCAP 7720 SNP array. We identified novel QTL controlling elongated fruit shape on chromosome 10, explaining up to 24% of the phenotypic variance. This information will be useful in improving tomato fruit morphology traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianheng Ren ◽  
Tao Fan ◽  
Shulin Chen ◽  
Xia Ou ◽  
Yongyan Chen ◽  
...  

As an important component, 1,000 kernel weight (TKW) plays a significant role in the formation of yield traits of wheat. Kernel size is significantly positively correlated to TKW. Although numerous loci for kernel size in wheat have been reported, our knowledge on loci for kernel area (KA) and kernel circumference (KC) remains limited. In the present study, a recombinant inbred lines (RIL) population containing 371 lines genotyped using the Wheat55K SNP array was used to map quantitative trait loci (QTLs) controlling the KA and KC in multiple environments. A total of 54 and 44 QTLs were mapped by using the biparental population or multienvironment trial module of the inclusive composite interval mapping method, respectively. Twenty-two QTLs were considered major QTLs. BLAST analysis showed that major and stable QTLs QKc.sau-6A.1 (23.12–31.64 cM on 6A) for KC and QKa.sau-6A.2 (66.00–66.57 cM on 6A) for KA were likely novel QTLs, which explained 22.25 and 20.34% of the phenotypic variation on average in the 3 year experiments, respectively. Two Kompetitive allele-specific PCR (KASP) markers, KASP-AX-109894590 and KASP-AX-109380327, were developed and tightly linked to QKc.sau-6A.1 and QKa.sau-6A.2, respectively, and the genetic effects of the different genotypes in the RIL population were successfully confirmed. Furthermore, in the interval where QKa.sau-6A.2 was located on Chinese Spring and T. Turgidum ssp. dicoccoides reference genomes, only 11 genes were found. In addition, digenic epistatic QTLs also showed a significant influence on KC and KA. Altogether, the results revealed the genetic basis of KA and KC and will be useful for the marker-assisted selection of lines with different kernel sizes, laying the foundation for the fine mapping and cloning of the gene(s) underlying the stable QTLs detected in this study.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1126D-1127
Author(s):  
Oleg Daugovish ◽  
Kirk Larson

Total and marketable yield, fruit size and fruit rot were evaluated for `Camarosa' and `Ventana' strawberries grown with or without protected culture in southern California in 2003 and 2004. In both years, bareroot transplants were established on 5 Oct. using standard “open field” production methods. Fifty-five days after transplanting, metal posts and arcs were positioned over portions of the field and covered with 0.0324-mm-thick clear polyethylene (Tufflite Thermal, Tyco Plastics, Inc., Minneapolis, Minn.) to create “tunnel” structures 5 m wide, 25 m long, and 2.5 m high. Each tunnel covered three contiguous strawberry beds, and experiment design was a randomized complete block with four replications, with individual plots consisting of 20 plants. In 2003, early season (Jan.–1 Apr.) marketable yields in tunnels were 90% and 84% greater than outdoor culture for `Ventana' and `Camarosa', respectively. In 2004, use of tunnels resulted in a 140% marketable yield increase for `Ventana' and 62% for `Camarosa' (Jan.–31 Mar.); however, unusually high temperatures (38 °C) in April resulted in reduced yields in tunnels thereafter. In both years, increased early production coincided with highest fresh market fruit prices, resulting in $5700–7700 greater returns per-acre compared to open field production. For both cultivars, tunnel production resulted in 37% to 63% fewer non-marketable fruit due to less rain damage, better fruit shape, and decreased incidence of gray mold. For all treatments, fruit size decreased as the season progressed and was more pronounced in tunnels after April. Overall, these studies indicate that tunnels have potential for enhancing early-season production and profitability of strawberries in southern California.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1239
Author(s):  
Vinitchan Ruanjaichon ◽  
Kanogporn Khammona ◽  
Burin Thunnom ◽  
Khundej Suriharn ◽  
Chalong Kerdsri ◽  
...  

Sweetness is an economically important eating quality trait for sweet-corn breeding. To investigate the genetic control of the sweetness trait, we conducted a genome-wide association study (GWAS) in an association panel consisting of 250 sweet corn and waxy corn inbred and recombinant inbred lines (RILs), together with the genotypes obtained from the high-density 600K maize genotyping single-nucleotide polymorphism (SNP) array. GWAS results identified 12 significantly associated SNPs on chromosomes 3, 4, 5, and 7. The most associated SNP, AX_91849634, was found on chromosome 3 with a highly significant p-value of ≤1.53 × 10−14. The candidate gene identified within the linkage disequilibrium (LD) of this marker was shrunken2 (Zm00001d044129; sh2), which encodes ADP-glucose pyrophosphorylase (AGPase), a 60 kDa subunit enzyme that affects starch metabolism in the maize endosperm. Several SNP markers specific to variants in sh2 were developed and validated. According to the validation in a set of 81 inbred, RIL, and popular corn varieties, marker Sh2_rs844805326, which was developed on the basis of the SNP at the position 154 of exon 1, was highly efficient in classifying sh2-based sweet corn from other types of corn. This functional marker is extremely useful for marker-assisted breeding in sh2-sweet corn improvement and marketable seed production.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Krishna Bhattarai ◽  
Sadikshya Sharma ◽  
Dilip R. Panthee

Cultivated tomato has been in existence for about 400 years and breeding activities have been conducted for only eight decades. However, more than 10,000 tomato cultivars have already been developed. Ninety-one tomato genotypes were characterized for twenty-one morphological traits using developmental, vegetative, and fruit traits. Correlation, principal component, and cluster analysis between the traits were carried out. Higher correlations between fruit traits including fruit shape, fruit size, and fruit types were observed. These correlations indicate that specific fruit types require specific traits like branched inflorescence and a greater number of fruits per inflorescence are beneficial only for smaller fruit sizes like cherry and grape tomatoes. Contrastingly, traits like determinate growth habit and fruit maturity are preferred in all fruit types of tomato for better cultivation practices and longer production duration and hence showed lower correlations. Principal component analysis clustered tomato genotypes into three main clusters with multiple subgroups. Similar tomato genotypes were placed into one or more clusters confirming the results from correlation analysis. Involvement of private breeding programs in cultivar development has increased the competition on introgression of novel and desired traits across new cultivars. Understanding the diversity present in modern cultivars and potential traits identification in related wild species can enhance tomato diversity and improve quality and production.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Massimiliano Trenti ◽  
Silvia Lorenzi ◽  
Pier Luigi Bianchedi ◽  
Daniele Grossi ◽  
Osvaldo Failla ◽  
...  

Abstract Background Understanding the complexity of the vine plant’s response to water deficit represents a major challenge for sustainable winegrowing. Regulation of water use requires a coordinated action between scions and rootstocks on which cultivars are generally grafted to cope with phylloxera infestations. In this regard, a genome-wide association study (GWAS) approach was applied on an ‘ad hoc’ association mapping panel including different Vitis species, in order to dissect the genetic basis of transpiration-related traits and to identify genomic regions of grape rootstocks associated with drought tolerance mechanisms. The panel was genotyped with the GrapeReSeq Illumina 20 K SNP array and SSR markers, and infrared thermography was applied to estimate stomatal conductance values during progressive water deficit. Results In the association panel the level of genetic diversity was substantially lower for SNPs loci (0.32) than for SSR (0.87). GWAS detected 24 significant marker-trait associations along the various stages of drought-stress experiment and 13 candidate genes with a feasible role in drought response were identified. Gene expression analysis proved that three of these genes (VIT_13s0019g03040, VIT_17s0000g08960, VIT_18s0001g15390) were actually induced by drought stress. Genetic variation of VIT_17s0000g08960 coding for a raffinose synthase was further investigated by resequencing the gene of 85 individuals since a SNP located in the region (chr17_10,497,222_C_T) was significantly associated with stomatal conductance. Conclusions Our results represent a step forward towards the dissection of genetic basis that modulate the response to water deprivation in grape rootstocks. The knowledge derived from this study may be useful to exploit genotypic and phenotypic diversity in practical applications and to assist further investigations.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e48305 ◽  
Author(s):  
Cameron Peace ◽  
Nahla Bassil ◽  
Dorrie Main ◽  
Stephen Ficklin ◽  
Umesh R. Rosyara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document