scholarly journals Regulatory circuits involving bud dormancy factor PpeDAM6

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alba Lloret ◽  
Carles Quesada-Traver ◽  
Ana Conejero ◽  
Vicent Arbona ◽  
Concepción Gómez-Mena ◽  
...  

AbstractDORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.

2000 ◽  
Vol 125 (1) ◽  
pp. 135-142 ◽  
Author(s):  
A.M. Boland ◽  
P.H. Jerie ◽  
P.D. Mitchell ◽  
I. Goodwin ◽  
D.J. Connor

Individual and interactive effects of restricted root volume (RRV) and regulated deficit irrigation (RDI) on vegetative growth and mineral nutrition of peach trees [Prunus persica (L.) Batsch (Peach Group) `Golden Queen'] were studied over 3 years (1992-95). Trees were grown in lysimeters of five different volumes (0.025, 0.06, 0.15, 0.4, and 1.0 m3) with either full or deficit (RDI) irrigation. Increasing soil volume increased vegetative growth as measured by trunk cross-sectional area (TCA) (linear and quadratic, P < 0.011) and tree weight (linear, P < 0.001) with the final TCA ranging from 29.0 to 51.0 cm2 and tree weight ranging from 7.2 to 12.1 kg for the smallest to largest volumes. Root density measured at the completion of the experiment decreased with increasing soil volume (linear and quadratic, P < 0.001) with root length density declining from 24.0 to 2.0 cm·cm-3. RDI reduced vegetative growth by up to 70% as measured by weight of summer prunings. Root restriction was effective in controlling vegetative vigor and is a viable alternative for control of vegetative growth. Mineral nutrition did not limit tree growth.


2016 ◽  
Vol 104 ◽  
pp. 54-70 ◽  
Author(s):  
Ming-Yue Sun ◽  
Xi-Ling Fu ◽  
Qiu-Ping Tan ◽  
Li Liu ◽  
Min Chen ◽  
...  

1984 ◽  
Vol 11 (2) ◽  
pp. 49 ◽  
Author(s):  
IR Dann ◽  
RA Wildes ◽  
DJ Chalmers

The distribution of current assimilates between competing zones of potential growth in the peach tree (Prunus persica (L.) Batsch) was studied using limb girdling, which altered the balance between reproductive growth and vegetative growth in a similar manner to the aging process. Fruit matured earlier, and leaf senescence and abscission were advanced in girdled limbs. which supported normal fruit loads but had only half the leaf area. Lateral growth and secondary thickening were reduced by 50% but vegetative growth approached normal rates at times when fruit growth was minimal, indicating that girdling reduced the ability of vegetative growth to compete with reproductive growth for assimilates. Starch and soluble sugars did not accumulate above the girdles. The data are consistent with the hypothesis that girdling alters the balance between endogenous growth regulators which favour either vegetative or reproductive development. We suggest that the initial effects on the girdled limb are attributable to accumulation of growth regulators produced above the girdle. The reduced flow of growth regulators to the roots eventually results in lowered levels of root-produced hormones which subsequently causes effects throughout the tree.


2020 ◽  
Vol 21 (4) ◽  
pp. 1378
Author(s):  
Tengfei Qin ◽  
Wei Hao ◽  
Runrun Sun ◽  
Yuqing Li ◽  
Yuanyuan Wang ◽  
...  

Verticillium dahliae (V. dahliae) infects roots and colonizes the vascular vessels of host plants, significantly reducing the economic yield of cotton and other crops. In this study, the protein VdTHI20, which is involved in the thiamine biosynthesis pathway, was characterized by knocking out the corresponding VdTHI20 gene in V. dahliae via Agrobacterium tumefaciens-mediated transformation (ATMT). The deletion of VdTHI20 resulted in several phenotypic defects in vegetative growth and conidiation and in impaired virulence in tobacco seedlings. We show that VdTHI20 increases the tolerance of V. dahliae to UV damage. The impaired vegetative growth of ΔVdTHI20 mutant strains was restored by complementation with a functional copy of the VdTHI20 gene or by supplementation with additional thiamine. Furthermore, the root infection and colonization of the ΔVdTHI20 mutant strains were suppressed, as indicated by green fluorescent protein (GFP)-labelling under microscope observation. When the RNAi constructs of VdTHI20 were used to transform Nicotiana benthamiana, the transgenic lines expressing dsVdTHI20 showed elevated resistance to V. dahliae. Together, these results suggest that VdTHI20 plays a significant role in the pathogenicity of V. dahliae. In addition, the pathogenesis-related gene VdTHI20 exhibits potential for controlling V. dahliae in important crops.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 141 ◽  
Author(s):  
Muhammad Shahbaz ◽  
Marinus Pilon

Copper (Cu) is a micronutrient for plants. Three small RNAs, which are up-regulated by Cu deficiency and target transcripts for Cu proteins, are among the most conserved microRNAs in plants. It was hypothesized that these Cu-microRNAs help save Cu for the most essential Cu-proteins under deficiency. Testing this hypothesis has been a challenge due to the redundancy of the Cu microRNAs and the properties of the regulatory circuits that control Cu homeostasis. In order to investigate the role of Cu-microRNAs in Cu homeostasis during vegetative growth, we used a tandem target mimicry strategy to simultaneously inhibit the function of three conserved Cu-microRNAs in Arabidopsis thaliana. When compared to wild-type, transgenic lines that express the tandem target mimicry construct showed reduced Cu-microRNA accumulation and increased accumulation of transcripts that encode Cu proteins. As a result, these mimicry lines showed impaired photosynthesis and growth compared to wild type on low Cu, which could be ascribed to a defect in accumulation of plastocyanin, a Cu-containing photosynthetic electron carrier, which is itself not a Cu-microRNA target. These data provide experimental support for a Cu economy model where the Cu-microRNAs together function to allow maturation of essential Cu proteins under impending deficiency.


Polar Biology ◽  
1986 ◽  
Vol 6 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Espen Paus ◽  
Jarle Nilsen ◽  
Olavi Junttila

HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 543-546
Author(s):  
D.M. Glenn ◽  
S.S. Miller

The objectives of this 7-year study were to determine the effect of repeated root pruning and irrigation on peach (Prunus persica L. Batsch) tree growth and soil water use. Root pruning began in the year of planting. Peach trees trained to a freestanding “Y” were root-pruned at flowering for 4 years (1985 to 1988) and subsequently at flowering and monthly through July for 3 years (1989 to 1991). Irrigation was withheld or applied the full season or only during stage 3 of fruit growth on root-pruned and non-root-pruned trees. Root pruning limited soil water availability throughout most of the growing season when irrigation was withheld; however, when irrigation was applied, there was no difference in soil water availability. The root length density of peach roots was greatest in the 0 to 30-cm depth, was promoted by irrigation, and was reduced by root pruning in the 0 to 90-cm root zone. Full-season irrigation increased vegetative growth over the nonirrigated treatments. Root pruning had no effect on vegetative growth measured as fresh pruned material. The treatments had no effect on leaf nutrient content, except that root pruning reduced Zn in five consecutive years. Fruit yield was reduced 1 in 5 years by root pruning, and full-season irrigation reduced yield in 3 of 5 years. Repeated root pruning restricted the lateral spread of the root zone and the use of soil resources, yet on the deep soil of this site, restricting the lateral extent of the root zone did not reduce vegetative tree growth.


2016 ◽  
Author(s):  
Paula Vizoso ◽  
Claudio Meneses ◽  
Reinaldo Campos ◽  
Ariel Orellana

Identification of DNA markers associated with mealiness trait is an important tool to agricultural industry. Many peach breeding initiatives have as aim to improve early selection of varieties with better postharvest performance. We present a family-based approach to identify and develop an association panel to evaluate potential varieties susceptible to mealiness induced by chilling. We used whole-genome sequencing and SNV genotyping of parents and ten contrasting siblings (Juicy and mealy) obtained from segregating population of self-cross ‘Venus’. Results show that there are differences regarding SNVs and structural variants (SVs) that could be associated with mealy to be contrasted with individuals without such damage phenotype. Preliminary results showed a total of 30.564 SNVs and 2.297 SVs having a non-synonymous change in genes. Comparison of SNVs between segregants and parental revealed 1.963 SNVs associated genes presents in juicy segregants and 6.162 SNVs associated genes in segregants mealiness. We found 230 and 244 SVs with functional impact in genomes mealy and juicy. As proof of concept, all SNVs obtained were correlated with the information published in peach related to chilling injury (QTL genomic region, dbSNP, SDR chillpeach, upeach and RNA-seq available). Guided by preliminary analysis, we selected pools of alleles that display a frequency difference between mealy and juicy fruit and a selective sweep is observed around those alleles. Some of the SNVs have been previously correlated with chilling injury through transcriptome analysis. Additionally, we identify new genome regions associated with mealy susceptibility. Most of these genes were related to negative regulation of programmed cell death, cell surface receptors signaling pathways and cell wall remodeling. On the other hand, the genes affected by SV in the juicy segregating are classified according to the biological process in metabolism of sugars and fatty acid biosynthetic process. These results provide insights into genetics determinants related with susceptibility to mealiness. Analysis of the sequences revealed the existence of a high polymorphism rate in nectarines, and statistical analysis showed that the segments could be used as genetic barcodes that should be informative enough to allow reliable identification of cultivars. This study proposes a predictive panel of biomarkers to identify varieties at susceptible for mealiness and identifies new candidates genes linked to mealiness in peach.


Sign in / Sign up

Export Citation Format

Share Document