scholarly journals A comprehensive, mechanistically detailed, and executable model of the cell division cycle in Saccharomyces cerevisiae

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ulrike Münzner ◽  
Edda Klipp ◽  
Marcus Krantz
1992 ◽  
Vol 12 (12) ◽  
pp. 5455-5463 ◽  
Author(s):  
K B Freeman ◽  
L R Karns ◽  
K A Lutz ◽  
M M Smith

The promoters of the Saccharomyces cerevisiae histone H3 and H4 genes were examined for cis-acting DNA sequence elements regulating transcription and cell division cycle control. Deletion and linker disruption mutations identified two classes of regulatory elements: multiple cell cycle activation (CCA) sites and a negative regulatory site (NRS). Duplicate 19-bp CCA sites are present in both the copy I and copy II histone H3-H4 promoters arranged as inverted repeats separated by 45 and 68 bp. The CCA sites are both necessary and sufficient to activate transcription under cell division cycle control. A single CCA site provides cell cycle control but is a weak transcriptional activator, while an inverted repeat comprising two CCA sites provides both strong transcriptional activation and cell division cycle control. The NRS was identified in the copy I histone H3-H4 promoter. Deletion or disruption of the NRS increased the level of the histone H3 promoter activity but did not alter the cell division cycle periodicity of transcription. When the CCA sites were deleted from the histone promoter, the NRS element was unable to confer cell division cycle control on the remaining basal level of transcription. When the NRS element was inserted into the promoter of a foreign reporter gene, transcription was constitutively repressed and did not acquire cell cycle regulation.


1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


Genetics ◽  
1980 ◽  
Vol 96 (4) ◽  
pp. 859-876 ◽  
Author(s):  
David Schild ◽  
Breck Byers

ABSTRACT The meiotic effects of two cell-division-cycle mutations of Saccharomyces cerevisiae (cdc5 and cdc14) have been examined. These mutations were isolated by L. H. Hartwell and his colleagues and characterized as defective in mitosis, causing a temperature-sensitive arrest in late nuclear division. When subjected to the restrictive temperature in meiosis, diploid cells homozygous for either of these mutations generally proceeded through premeiotic DNA synthesis and commitment to meiotic levels of recombination, but then arrested at a stage following spindle pole body (SPB) duplication and separation. The two SPBs lacked the interconnection by spindle microtubules typical of the complete meiosis I spindle. Challenge of these homozygotes by a semi-restrictive temperature often caused the production of asci containing two diploid spores. Genetic analysis of the viable pairs of spores revealed that each spore had become homozygous for centromere-linked markers significantly more frequently than for distal markers, indicating that the two spores each contained pairs of sister centromeres that had co-segregated in the reductional division of meiosis I. Ultrastructural analysis of the cdc5 homozygote demonstrated that these cells had completed meiosis I and formed two meiosis II spindles, but that the latter remained unusually short. This resulted in the encapsulation of both poles of each spindle within a single spore wall. These mutations therefore are defective in both meiotic divisions, as well as in the mitotic division described originally.


2000 ◽  
Vol 351 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Gian Luigi RUSSO ◽  
Christian VAN DEN BOS ◽  
Ann SUTTON ◽  
Paola COCCETTI ◽  
Maurizio D. BARONI ◽  
...  

The CDK (cyclin-dependent kinase) family of enzymes is required for the G1-to-S-phase and G2-to-M-phase transitions during the cell-division cycle of eukaryotes. We have shown previously that the protein kinase CKII catalyses the phosphorylation of Ser-39 in Cdc2 during the G1 phase of the HeLa cell-division cycle [Russo, Vandenberg, Yu, Bae, Franza and Marshak (1992) J. Biol. Chem. 267, 20317–20325]. To identify a functional role for this phosphorylation, we have studied the homologous enzymes in the budding yeast Saccharomyces cerevisiae. The S. cerevisiae homologue of Cdc2, Cdc28, contains a consensus CKII site (Ser-46), which is homologous with that of human Cdc2. Using in vitro kinase assays, metabolic labelling, peptide mapping and phosphoamino acid analysis, we demonstrate that this site is phosphorylated in Cdc28 in vivo as well in vitro. In addition, S. cerevisiae cells in which Ser-46 has been mutated to alanine show a decrease in both cell volume and protein content of 33%, and this effect is most pronounced in the stationary phase. Because cell size in S. cerevisiae is regulated primarily at the G1 stage, we suggest that CKII contributes to the regulation of the cell cycle in budding yeast by phosphorylation of Cdc28 as a checkpoint for G1 progression.


2010 ◽  
Vol 21 (13) ◽  
pp. 2161-2171 ◽  
Author(s):  
Kin Chan ◽  
Jesse P. Goldmark ◽  
Mark B. Roth

The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.


2002 ◽  
Vol 22 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Cong-Jun Li ◽  
Melvin L. DePamphilis

ABSTRACT Previous studies have shown that changes in the affinity of the hamster Orc1 protein for chromatin during the M-to-G1 transition correlate with the activity of hamster origin recognition complexes (ORCs) and the appearance of prereplication complexes at specific sites. Here we show that Orc1 is selectively released from chromatin as cells enter S phase, converted into a mono- or diubiquitinated form, and then deubiquitinated and re-bound to chromatin during the M-to-G1 transition. Orc1 is degraded by the 26S proteasome only when released into the cytosol, and peptide additions to Orc1 make it hypersensitive to polyubiquitination. In contrast, Orc2 remains tightly bound to chromatin throughout the cell cycle and is not a substrate for ubiquitination. Since the concentration of Orc1 remains constant throughout the cell cycle, and its half-life in vivo is the same as that of Orc2, ubiquitination of non-chromatin-bound Orc1 presumably facilitates the inactivation of ORCs by sequestering Orc1 during S phase. Thus, in contrast to yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe), mammalian ORC activity appears to be regulated during each cell cycle through selective dissociation and reassociation of Orc1 from chromatin-bound ORCs.


Genetics ◽  
1985 ◽  
Vol 111 (4) ◽  
pp. 715-734
Author(s):  
James H Thomas ◽  
Norma F Neff ◽  
David Botstein

ABSTRACT Of 173 mutants of Saccharomyces cerevisiae resistant to the antimitotic drug benomyl (BenR), six also conferred cold-sensitivity for growth and three others conferred temperature-sensitivity for growth in the absence of benomyl. All of the benR mutations tested, including the nine conditional-lethal mutations, were shown to be in the same gene. This gene, TUB2, has previously been molecularly cloned and identified as the yeast structural gene encoding β-tubulin. Four of the conditional-lethal alleles of TUB2 were mapped to particular restriction fragments within the gene. One of these mutations was cloned and sequenced, revealing a single amino acid change, from arginine to histidine at amino acid position 241, which is responsible for both the BenR and the cold-sensitive lethal phenotypes. The terminal arrest morphology of conditional-lethal alleles of TUB2 at their restrictive temperature showed a characteristic cell-division-cycle defect, suggesting a requirement for tubulin function primarily in mitosis during the vegetative growth cycle. The TUB2 gene was genetically mapped to the distal left arm of chromosome VI, very near the actin gene, ACT1; no CDC (cell-division-cycle) loci have been mapped previously to this location. TUB2 is thus the first cell-division-cycle gene known to encode a cytoskeletal protein that has been identified in S. cerevisiae.


Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Hermansyah Hermansyah ◽  
Susilawati Susilawati

To elucidate the anti-proliferative effect of noni (Morinda citrifolia) fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741).  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v) noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR).  Transcriptional level of genes CDC6 (Cell Division Cycle-6), CDC20 (Cell Division Cycle-20), FAR1 (Factor ARrest-1), FUS3 (FUSsion-3), SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1), WHI5 (WHIskey-5), YOX1 (Yeast homeobOX-1) and YHP1 (Yeast Homeo-Protein-1) increased, oppositely genes expression of DBF4 (DumbBell Forming), MCM1 (Mini Chromosome Maintenance-1) and TAH11 (Topo-A Hypersensitive-11) decreased, while the expression level of genes CDC7 (Cell Division Cycle-7), MBP1 (MIul-box Binding Protein-1) and SWI6 (SWItching deficient-6) relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.


Sign in / Sign up

Export Citation Format

Share Document