scholarly journals Homogentisic acid-derived pigment as a biocompatible label for optoacoustic imaging of macrophages

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ina Weidenfeld ◽  
Christian Zakian ◽  
Peter Duewell ◽  
Andriy Chmyrov ◽  
Uwe Klemm ◽  
...  

Abstract Macrophages are one of the most functionally-diverse cell types with roles in innate immunity, homeostasis and disease making them attractive targets for diagnostics and therapy. Photo- or optoacoustics could provide non-invasive, deep tissue imaging with high resolution and allow to visualize the spatiotemporal distribution of macrophages in vivo. However, present macrophage labels focus on synthetic nanomaterials, frequently limiting their ability to combine both host cell viability and functionality with strong signal generation. Here, we present a homogentisic acid-derived pigment (HDP) for biocompatible intracellular labeling of macrophages with strong optoacoustic contrast efficient enough to resolve single cells against a strong blood background. We study pigment formation during macrophage differentiation and activation, and utilize this labeling method to track migration of pro-inflammatory macrophages in vivo with whole-body imaging. We expand the sparse palette of macrophage labels for in vivo optoacoustic imaging and facilitate research on macrophage functionality and behavior.

2019 ◽  
Vol 6 (1) ◽  
pp. 501-524 ◽  
Author(s):  
Pradeep D. Uchil ◽  
Kelsey A. Haugh ◽  
Ruoxi Pi ◽  
Walther Mothes

Viruses are causative agents for many diseases and infect all living organisms on the planet. Development of effective therapies has relied on our ability to isolate and culture viruses in vitro, allowing mechanistic studies and strategic interventions. While this reductionist approach is necessary, testing the relevance of in vitro findings often takes a very long time. New developments in imaging technologies are transforming our experimental approach where viral pathogenesis can be studied in vivo at multiple spatial and temporal resolutions. Here, we outline a vision of a top-down approach using noninvasive whole-body imaging as a guide for in-depth characterization of key tissues, physiologically relevant cell types, and pathways of spread to elucidate mechanisms of virus spread and pathogenesis. Tool development toward imaging of infectious diseases is expected to transform clinical diagnosis and treatment.


Author(s):  
Shivangi Agarwal ◽  
Yashwanth R Sudhini ◽  
Onur K Polat ◽  
Jochen Reiser ◽  
Mehmet Mete Altintas

Kidneys, one of the vital organs in our body, are responsible for maintaining whole-body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in-depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the sub-regions. Recent developments in labeling, tracing, and imaging techniques enabled us to mark, monitor and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we have summarized different cell types, specific markers that are uniquely associated with those cell types, and their distribution in kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in the cell-type specific markers. Thus, the term "cell marker" might be imprecise and sub-optimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although, the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to the researchers, we acknowledge that the list may not be necessarily exhaustive.


Author(s):  
Noriko Sato ◽  
Peter L. Choyke

AbstractIn the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3985
Author(s):  
Jae Young Lee ◽  
Sajid Mushtaq ◽  
Jung Eun Park ◽  
Hee Soon Shin ◽  
So-Young Lee ◽  
...  

Concern about environmental exposure to hazardous substances has grown over the past several decades, because these substances have adverse effects on human health. Methods used to monitor the biological uptake of hazardous substances and their spatiotemporal behavior in vivo must be accurate and reliable. Recent advances in radiolabeling chemistry and radioanalytical methodologies have facilitated the quantitative analysis of toxic substances, and whole-body imaging can be achieved using nuclear imaging instruments. Herein, we review recent literature on the radioanalytical methods used to study the biological distribution, changes in the uptake and accumulation of hazardous substances, including industrial chemicals, nanomaterials, and microorganisms. We begin with an overview of the radioisotopes used to prepare radiotracers for in vivo experiments. We then summarize the results of molecular imaging studies involving radiolabeled toxins and their quantitative assessment. We conclude the review with perspectives on the use of radioanalytical methods for future environmental research.


Antibodies ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 43 ◽  
Author(s):  
Ekaterina Gorshkova ◽  
Grigory Efimov ◽  
Ksenia Ermakova ◽  
Ekaterina Vasilenko ◽  
Diana Yuzhakova ◽  
...  

Upregulation of the expression of tumor necrosis factor (TNF-α, TNF) has a significant role in the development of autoimmune diseases. The fluorescent antibodies binding TNF may be used for personalized therapy of TNF-dependent diseases as a tool to predict the response to anti-TNF treatment. We generated recombinant fluorescent proteins consisting of the anti-TNF module based on the variable heavy chain (VHH) of camelid antibodies fused with the far-red fluorescent protein Katushka (Kat). Two types of anti-TNF VHH were developed: one (BTN-Kat) that was bound both human or mouse TNF, but did not neutralize their activity, and a second (ITN-Kat) that was binding and neutralizing human TNF. BTN-Kat does not interfere with TNF biological functions and can be used for whole-body imaging. ITN-Kat can be evaluated in humanized mice or in cells isolated from humanized mice. It is able to block human TNF (hTNF) activities both in vitro and in vivo and may be considered as a prototype of a theranostic agent for autoimmune diseases.


Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1060-1066 ◽  
Author(s):  
M Miura ◽  
CW Jackson ◽  
SA Lyles

Abstract To gain insight into the regulation of megakaryocyte precursors in vivo, we assayed (in vitro) megakaryocyte growth-promoting activity (Meg-GPA) in plasma of rats in which both marrow hypoplasia and thrombocytopenia had been induced by irradiation. Rats received whole body irradiation of 834 rad from a 137Cs source. Plasma was collected at intervals of hours to days, up through day 21 postirradiation, and was tested, at a concentration of 30%, for Meg-GPA on bone marrow cells cultured in 1.1% methylcellulose with 5 X 10(-5) M 2-mercaptoethanol. With normal rat plasma, no megakaryocyte colonies (defined as greater than or equal to 4 megakaryocytes) were seen and only a few single megakaryocytes and clusters (defined as 2 or 3 megakaryocytes) were formed. Two peaks of plasma Meg-GPA were observed after irradiation. The first appeared at 12 hr, before any decrease in marrow megakaryocyte concentration or platelet count. The second occurred on days 10–14 after irradiation, after the nadir in megakaryocyte concentration and while platelet counts were at their lowest levels. A dose-response study of plasma concentration and megakaryocyte growth, using plasma collected 11 days postirradiation, demonstrated that patterns of megakaryocyte growth were related to plasma concentration; formation of single megakaryocytes was optimal over a range of 20%-30% plasma concentration, while cluster and colony formation were optimal at a plasma concentration of 30%. All forms of megakaryocyte growth were decreased with 40% plasma. There was a linear relationship between the number of bone marrow cells plated and growth of single cells, clusters, and colonies using a concentration of 30% plasma collected 11 days after irradiation. We conclude that irradiation causes time- related increases in circulating megakaryocyte growth-promoting activity. We suggest that the irradiated rat is a good model for studying the relationships between Meg-GPA and megakaryocyte and platelet concentration in vivo.


2006 ◽  
Vol 50 (10) ◽  
pp. 3260-3268 ◽  
Author(s):  
Qing Zhu ◽  
Yoko Oei ◽  
Dirk B. Mendel ◽  
Evelyn N. Garrett ◽  
Montesa B. Patawaran ◽  
...  

ABSTRACT The lack of a robust small-animal model for hepatitis C virus (HCV) has hindered the discovery and development of novel drug treatments for HCV infections. We developed a reproducible and easily accessible xenograft mouse efficacy model in which HCV RNA replication is accurately monitored in vivo by real-time, noninvasive whole-body imaging of gamma-irradiated SCID mice implanted with a mouse-adapted luciferase replicon-containing Huh-7 cell line (T7-11). The model was validated by demonstrating that both a small-molecule NS3/4A protease inhibitor (BILN 2061) and human alpha interferon (IFN-α) decreased HCV RNA replication and that treatment withdrawal resulted in a rebound in replication, which paralleled clinical outcomes in humans. We further showed that protease inhibitor and IFN-α combination therapy was more effective in reducing HCV RNA replication than treatment with each compound alone and supports testing in humans. This robust mouse efficacy model provides a powerful tool for rapid evaluation of potential anti-HCV compounds in vivo as part of aggressive drug discovery efforts.


2005 ◽  
Vol 73 (11) ◽  
pp. 7736-7746 ◽  
Author(s):  
Fredrik Pettersson ◽  
Anna M. Vogt ◽  
Cathrine Jonsson ◽  
Bobo W. Mok ◽  
Alireza Shamaei-Tousi ◽  
...  

ABSTRACT The occlusion of vessels by packed Plasmodium falciparum-infected (iRBC) and uninfected erythrocytes is a characteristic postmortem finding in the microvasculature of patients with severe malaria. Here we have employed immunocompetent Sprague-Dawley rats to establish sequestration in vivo. Human iRBC cultivated in vitro and purified in a single step over a magnet were labeled with 99mtechnetium, injected into the tail vein of the rat, and monitored dynamically for adhesion in the microvasculature using whole-body imaging or imaging of the lungs subsequent to surgical removal. iRBC of different lines and clones sequester avidly in vivo while uninfected erythrocytes did not. Histological examination revealed that a multiadhesive parasite adhered in the larger microvasculature, inducing extensive intravascular changes while CD36- and chondroitin sulfate A-specific parasites predominantly sequester in capillaries, inducing no or minor pathology. Removal of the adhesive ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), preincubation of the iRBC with sera to PfEMP1 or preincubation with soluble PfEMP1-receptors prior to injection significantly reduced the sequestration. The specificity of iRBC binding to the heterologous murine receptors was confirmed in vitro, using primary rat lung endothelial cells and rat lung cryosections. In offering flow dynamics, nonmanipulated endothelial cells, and an intact immune system, we believe this syngeneic animal model to be an important complement to existing in vitro systems for the screening of vaccines and adjunct therapies aiming at the prevention and treatment of severe malaria.


2015 ◽  
Vol 26 (22) ◽  
pp. 3940-3945 ◽  
Author(s):  
Laura Lande-Diner ◽  
Jacob Stewart-Ornstein ◽  
Charles J. Weitz ◽  
Galit Lahav

Tracking molecular dynamics in single cells in vivo is instrumental to understanding how cells act and interact in tissues. Current tissue imaging approaches focus on short-term observation and typically nonendogenous or implanted samples. Here we develop an experimental and computational setup that allows for single-cell tracking of a transcriptional reporter over a period of >1 wk in the context of an intact tissue. We focus on the peripheral circadian clock as a model system and measure the circadian signaling of hundreds of cells from two tissues. The circadian clock is an autonomous oscillator whose behavior is well described in isolated cells, but in situ analysis of circadian signaling in single cells of peripheral tissues is as-yet uncharacterized. Our approach allowed us to investigate the oscillatory properties of individual clocks, determine how these properties are maintained among different cells, and assess how they compare to the population rhythm. These experiments, using a wide-field microscope, a previously generated reporter mouse, and custom software to track cells over days, suggest how many signaling pathways might be quantitatively characterized in explant models.


Sign in / Sign up

Export Citation Format

Share Document