scholarly journals Chemical unfolding of protein domains induces shape change in programmed protein hydrogels

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Luai R. Khoury ◽  
Ionel Popa

AbstractProgrammable behavior combined with tailored stiffness and tunable biomechanical response are key requirements for developing successful materials. However, these properties are still an elusive goal for protein-based biomaterials. Here, we use protein-polymer interactions to manipulate the stiffness of protein-based hydrogels made from bovine serum albumin (BSA) by using polyelectrolytes such as polyethyleneimine (PEI) and poly-L-lysine (PLL) at various concentrations. This approach confers protein-hydrogels with tunable wide-range stiffness, from ~10–64 kPa, without affecting the protein mechanics and nanostructure. We use the 6-fold increase in stiffness induced by PEI to program BSA hydrogels in various shapes. By utilizing the characteristic protein unfolding we can induce reversible shape-memory behavior of these composite materials using chemical denaturing solutions. The approach demonstrated here, based on protein engineering and polymer reinforcing, may enable the development and investigation of smart biomaterials and extend protein hydrogel capabilities beyond their conventional applications.

2019 ◽  
Author(s):  
Luai R. Khoury ◽  
Ionel Popa

Abstract Programmable behavior combined with tailored stiffness and tunable biomechanical response are key requirements for developing successful materials. However, these properties are still an elusive goal for protein-based biomaterials. Here, we present a new method based on protein-polymer interactions, to manipulate the stiffness of protein-based hydrogels made from bovine serum albumin (BSA) by using polyelectrolytes such as poly(Ethelene)imine (PEI) and poly-L-lysine (PLL) at various concentrations. This approach confers protein-hydrogels tunable wide-range stiffness, from ~ 10 - 60 kPa when treated with PEI, without affecting the protein mechanics and nanostructure. We ascribe the increase in stiffness to the synergistic effect of the non-covalent electrostatic polymer-protein interaction, as well as the polymer-shell that stabilizes the protein domains nanomechanics. We use the 6-fold increase in stiffness induced by PEI to program BSA-hydrogels in various shapes. By utilizing the characteristic protein unfolding we can induce reversible shape-memory behavior of these composite materials using chemical denaturing solutions. We anticipate this novel approach based on protein engineering and polymer reinforcing will enable the development and investigation of new smart biomaterials and extend protein hydrogel capabilities beyond their conventional applications.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Hamil Shah ◽  
Abdullahi Inshaar ◽  
Chengzhe Zou ◽  
Shreyas Chaudhari ◽  
Saad Alharbi ◽  
...  

Physical deformation mechanisms are emerging as compelling and simple ways to adapt radio frequency (RF) characteristics of antennas in contrast to digital steering approaches acting on topologically fixed antennas. Concepts of physical reconfigurability also enable exceptional capabilities such as deployable and morphing antenna arrays that serve multiple functions and permit compact transport with ease. Yet, the emergent concepts lack broad understanding of effective approaches to integrate conformal, electrically conductive architectures with high-compliance foldable frameworks. To explore this essential interface where electrical demands and mechanical requirements may conflict, this research introduces a new class of origami-based tessellated antennas whose RF characteristics are self-tuned by physical reconfiguration of the antenna shape. E-textile materials are used to permit large antenna shape change while maintaining electrical conductivity. Dipole and patch antennas are considered as conventional antenna platforms upon which to innovate with the e-textile origami concept. Multiphysics modeling efforts establish the efficacy of foldable antenna geometries for broad tailoring of the RF characteristics. Experiments with proof-of-concept antennas confirm the large adaptability of wave radiation properties enabled by the reconfiguration of the e-textile origami surfaces. The results suggest that e-textile antennas can be integrated into clothing and mechanical structures, providing a non-invasive way of quantifying deformation for a wide range of applications.


1978 ◽  
Vol 26 (4) ◽  
pp. 383-398 ◽  
Author(s):  
A. Darwinkel

The effect of plant density on the growth and productivity of the various ear-bearing stems of winter wheat was studied in detail to obtain information on the pattern of grain production of crops grown under field conditions. Strong compensation effects were measured: a 160-fold increase in plant density (5-800 plants/m2) finally resulted in a 3-fold increase in grain yield (282 to 850 g DM/m2). Max. grain yield was achieved at 100 plants/m2, which corresponded to 430 ears/m2 and to about 19 000 grains/m2. At higher plant densities more ears and more grains were produced, but grain yield remained constant. Tillering/plant was largely favoured by low plant densities because these allowed tiller formation to continue for a longer period and a greater proportion of tillers produced ears. However, at higher plant densities more tillers/unit area were formed and, despite a higher mortality, more ears were produced. The productivity of individual ears, from main stems as well as from tillers, decreased with increasing plant density and with later emergence of shoots. In the range from 5 to 800 plants/m2 grain yield/ear decreased from 2.40 to 1.14 g DM. At 800 plants/m2 nearly all ears originated from main stems, but with decreasing plant density tillers contributed increasingly to the number of ears. At 5 plants/m2, there were 23 ears/plant and grain yield/ear ranged from 4.20 (main stem) to 1.86 g DM (late-formed stems). Grain number/ear was reduced at higher densities and on younger stems, because there were fewer fertile spikelets and fewer grains in these spikelets. At the low density of 5 plants/m2, plants developed solitarily and grain yield/ear was determined by the number of grains/ear as well as by grain wt. Above 400 ears/m2, in this experiment reached at 100 plants/m2 and more, grain yield/ear depended solely on grain number, because the wt. of grains of the various stems were similar. The harvest index showed a max. of about 44% at a moderate plant density; at this density nearly max. grain yield was achieved. At low plant densities the harvest index decreased from 45% in main stems to about 36% in late-formed stems. However, no differences in harvest index existed between the various ear-bearing stems if the number of ears exceeded 400/m2. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2017 ◽  
Vol 28 (11) ◽  
pp. 1519-1529 ◽  
Author(s):  
Alison K. Spencer ◽  
Andrew J. Schaumberg ◽  
Jennifer A. Zallen

Spatially organized macromolecular complexes are essential for cell and tissue function, but the mechanisms that organize micron-scale structures within cells are not well understood. Microtubule-based structures such as mitotic spindles scale with cell size, but less is known about the scaling of actin structures within cells. Actin-rich denticle precursors cover the ventral surface of the Drosophila embryo and larva and provide templates for cuticular structures involved in larval locomotion. Using quantitative imaging and statistical modeling, we demonstrate that denticle number and spacing scale with cell length over a wide range of cell sizes in embryos and larvae. Denticle number and spacing are reduced under space-limited conditions, and both features robustly scale over a 10-fold increase in cell length during larval growth. We show that the relationship between cell length and denticle spacing can be recapitulated by specific mathematical equations in embryos and larvae and that accurate denticle spacing requires an intact microtubule network and the microtubule minus end–binding protein, Patronin. These results identify a novel mechanism of micro­tubule-dependent actin scaling that maintains precise patterns of actin organization during tissue growth.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 903-914 ◽  
Author(s):  
N. Harden ◽  
H.Y. Loh ◽  
W. Chia ◽  
L. Lim

The Rho subfamily of Ras-related small GTP-binding proteins is involved in regulation of the cytoskeleton. The cytoskeletal changes induced by two members of this subfamily, Rho and Rac, in response to growth factor stimulation, have dramatic effects on cell morphology. We are interested in using Drosophila as a system for studying how such effects participate in development. We have identified two Drosophila genes, DRacA and DRacB, encoding proteins with homology to mammalian Rac1 and Rac2. We have made transgenic flies bearing dominant inhibitory (N17DRacA), and wild-type versions of the DRacA cDNA under control of an Hsp70 promoter. Expression of the N17DRacA transgene during embryonic development causes a high frequency of defects in dorsal closure which are due to disruption of cell shape changes in the lateral epidermis. Embryonic expression of N17DRacA also affects germband retraction and head involution. The epidermal cell shape defects caused by expression of N17DRacA are accompanied by disruption of a localized accumulation of actin and myosin thought to be driving epidermal cell shape change. Thus the Rho subfamily may be generating localized changes in the cytoskeleton during Drosophila development in a similar fashion to that seen in mammalian and yeast cells. The Rho subfamily is likely to be participating in a wide range of developmental processes in Drosophila through its regulation of the cytoskeleton.


2021 ◽  
pp. 64-68
Author(s):  
Karuna S. Ganiger ◽  
Milind F. Nagannawar ◽  
Soumya R. Patil ◽  
Pulikeshi M. Biradar

As the epigeic earthworms are known to be efcient and potential biodegrades and nutrient releasers, tolerant to wide range of ecological disturbances, aids in litter communication and efcient decomposers. Therefore, the present study was undertaken to nd out the inuence of various organic wastes (such as False Ashoka waste-FAW (Polyalthia longifolia), Parthenium wastePW (Parthenium hysterophorus), Cotton residue waste-CRW (Gossypium), Lawn grass waste-LGW (Agrostis) and Cattle manure-CM) on the production of worm biomass and vermicompost by the epigeic earthworm, Perionyx excavatus along with control compost experiments without worms (in triplicates) to know the potentiality of this worm species in processing of various organic wastes for the production of worm biomass as vermiprotein and vermicompost as biofertilizer. Both compost and vermicompost experimental pots were terminated after 35 and 70 days time intervals. Observations were made with respect to number of old and new adult worms, new sub-clitellates, juveniles, cocoons with their weight were noted to determine the total worm biomass (Gross biomass), biomass ratio (WBR) and Fold Increase in Worm Number (FIWN). Percent compost and vermicompost produced out of different organic waste were also calculated at the end of each experiment at35 and 70 days. The results of the present study revealed that the biomass of Perionyx excavatus such as Gross worm biomass (GWB), Worm biomass ratio (WBR) and Fold increase in worm number (FIWN) increased from 35days to 70 days time intervals in all the organic wastes (FAW, PW, CRW, LGW and CM). It was maximum in CM and minimum in FAW among all the organic wastes. There is a signicant variation was noticed in worm biomass production (GWB, WBR, and FIWN) among and between all the organic wastes except between few organic wastes at 35 and 70 days time intervals. The vermicompost production was more as compared to normal compost in all the organic wastes. Further, both compost and vermicompost production were more in CM followed by LGW, CRW, PW and minimum in FAW among all organic wastes. The signicant difference was also observed in the production of compost and vermicompost among and between different organic wastes except between few organic wastes at different time intervals. Based on the results, it can be concluded that the earthworm, Perionyx excavatus is an efcient epigeic earthworm species, effectively used in vermicomposting for the production of vermicompost and as well as in vermifarming in the production of worm biomass as vermiprotein. Further, earthworm biomass, compost and vermicompost production primarily depends on nature of organic wastes and secondly on the potentiality of earthworm species used in the experimental studies.


2000 ◽  
Vol 28 (6) ◽  
pp. 794-796 ◽  
Author(s):  
M.-A. Hartmann ◽  
L. Wentzinger ◽  
A. Hemmerlin ◽  
T. J. Bach

Plant isoprenoids represent a large group of compounds with a wide range of physiological functions. In the cytosol, isoprenoids are synthesized via the classical acetate/mevalonate pathway. In this pathway, farnesyl diphosphate (FPP) occupies a central position, from which isoprene units are dispatched to the different classes of isoprenoids, with sterols as the major end products. The present work deals with effects of squalestatin (SQ) on the metabolism of FPP in proliferating and synchronized cultured tobacco cv. Bright Yellow-2 cells. SQ is a potent inhibitor of squalene synthase (SQS), the first committed enzyme in the sterol pathway. At nanomolar concentrations, SQ severely impaired cell growth and sterol biosynthesis, as attested by the rapid decrease in SQS activity. At the same time, it triggered a several-fold increase in both the enzymic activity and mRNA levels of 3-hydroxy-3-methylglutaryl CoA reductase. When SQ was added to cells synchronized by aphidicolin treatment, it was found to block the cell cycle at the end of G1 phase, but no cell death was induced. Tobacco cells were also fed exogenous tritiated trans-trans farnesol, the allylic alcohol derived from FPP, in the presence and absence of SQ. Evidence is presented that this compound was incorporated into sterols and ubiquinone Q10. In the presence of SQ, the sterol pathway was inhibited, but no increase in the radioactivity of ubiquinone was observed, suggesting that this metabolic channel was already saturated under normal conditions.


2008 ◽  
Vol 54 ◽  
pp. 96-102 ◽  
Author(s):  
Andreas Lendlein ◽  
Marc Behl

Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. On the other side, different biomedical applications are demanding different combinations of material properties and functionalities. Compared to the intrinsic material properties, a functionality is not given by nature but result from the combination of the polymer architecture and a suitable process. Examples for functionalities that play a prominent role in the development of multifunctional polymers for medical applications are biofunctionality (e.g. cell or tissue specificity), degradability, or shape-memory functionality. In this sense, an important aim for developing multifunctional polymers is tailoring of biomaterials for specific biomedical applications. Here the traditional approach, which is designing a single new homo- or copolymer, reaches its limits. The strategy, that is applied here, is the development of polymer systems whose macroscopic properties can be tailored over a wide range by variation of molecular parameters. The Shape-memory capability of a material is its ability to trigger a predefined shape change by exposure to an external stimulus. A change in shape initiated by heat is called thermally-induced shape-memory effect. Thermally, light-, and magnetically induced shape-memory polymers will be presented, that were developed especially for minimally invasive surgery and other biomedical applications. Furthermore triple-shape polymers will be introduced, that have the capability to perform two subsequent shape changes. Thus enabling more complex movements of a polymeric material.


Insects ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 225 ◽  
Author(s):  
Beatriz Dáder ◽  
Elisa Viñuela ◽  
Aránzazu Moreno ◽  
María Plaza ◽  
Elisa Garzo ◽  
...  

The threat imposed by the bacterial pathogen Xylella fastidiosa to crops of utter importance to European agriculture such as olive, stone fruit and grapevine calls for immediate research against the meadow spittlebug, Philaenus spumarius (L.), the main European vector. Management tools should consider reducing juveniles of vector populations growing on weeds or cover crops during spring as nymphs have limited movement and do not contribute to disease spread. We examined a wide range of insecticides with different modes of action against P. spumarius nymphs in laboratory and semi-field glasshouse conditions. Pyrethroids (delthamethrin and λ-cyhalothrin) and natural pyrethrin (Pirecris®) + piperonyl butoxide (PBO) efficacy surpassed 86% after 24 h of exposure, without significant differences in the PBO amount tested. The inclusion of PBO caused a 3-fold increase in the mortality of P. spumarius nymphs compared to pyrethrin alone. Sulfoxaflor (Closer®) exhibited similar efficacy at 48 and 72 h but it was slow acting and mortality only reached 60% at 24 h. The LC90 was 34 ppm at 72 h. Pymetrozine, spirotetramat, azadirachtin and kaolin were not effective against nymphs (mortality <33%) although in azadirachtin-treated plants, mortality had a 3-fold increase from 24 to 72 h. Our results will help decision-making policy bodies to set up a sustainable integrated pest management of P. spumarius in areas where X. fastidiosa becomes a problem.


Sign in / Sign up

Export Citation Format

Share Document