scholarly journals Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Eamonn Reading ◽  
Zainab Ahdash ◽  
Chiara Fais ◽  
Vito Ricci ◽  
Xuan Wang-Kan ◽  
...  

Abstract Resistance–nodulation–division efflux pumps play a key role in inherent and evolved multidrug resistance in bacteria. AcrB, a prototypical member of this protein family, extrudes a wide range of antimicrobial agents out of bacteria. Although high-resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown. Here, we determine these structural dynamics in the presence of substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular dynamics simulations, and bacterial susceptibility studies. We show that an efflux pump inhibitor potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within a multidrug resistant clinical isolate modifies the plasticity of the transport pathway, which could explain its altered substrate efflux. Our results provide insight into the molecular mechanism of drug export and inhibition of a major multidrug efflux pump and the directive role of its dynamics.

Author(s):  
Eamonn Reading ◽  
Zainab Ahdash ◽  
Chiara Fais ◽  
Vito Ricci ◽  
Xuan Wang Kan ◽  
...  

AbstractResistance-nodulation-division (RND) efflux pumps play a key role in inherent and evolved multidrug-resistance (MDR) in bacteria. AcrB is the prototypical member of the RND family and acts to recognise and export a wide range of chemically distinct molecules out of bacteria, conferring resistance to a variety of antibiotics. Although high resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown, preventing a complete mechanistic understanding of efflux and inhibition. Here, we determine these structural dynamics in the presence of AcrB substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular modelling, drug binding and bacterial susceptibility studies. We show that the well-studied efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within an MDR clinical isolate, AcrBG288D, modifies the plasticity of the transport pathway, which could explain its altered substrate specificity. Our results provide molecular insight into drug export and inhibition of a major MDR-conferring efflux pump and the important directive role of its dynamics.


2003 ◽  
Vol 47 (10) ◽  
pp. 3067-3072 ◽  
Author(s):  
Wilson Terán ◽  
Antonia Felipe ◽  
Ana Segura ◽  
Antonia Rojas ◽  
Juan-Luis Ramos ◽  
...  

ABSTRACT Pseudomonas putida is well known for its metabolic capabilities, but recently, it has been shown to exhibit resistance to a wide range of antibiotics. In P. putida DOT-T1E, the TtgABC efflux pump, which has a broad substrate specificity, extrudes antibiotics such as ampicillin, carbenicillin, tetracycline, nalidixic acid, and chloramphenicol. We have analyzed the expression of the ttgABC efflux pump operon and its regulatory gene, ttgR, in response to several structurally unrelated antibiotics at the transcriptional level and investigated the role of the TtgR protein in this process. ttgABC and ttgR are expressed in vivo at a moderate basal level, which increases in the presence of hydrophobic antibiotics like chloramphenicol and tetracycline. In vitro experiments show that, in the absence of inducers, TtgR binds to a palindromic operator site which overlaps both ttgABC and ttgR promoters and dissociates from it in the presence of chloramphenicol and tetracycline. These results suggest that the TtgR repressor is able to bind to structurally different antibiotics, which allows induction of TtgABC multidrug efflux pump expression in response to these antimicrobial agents. This is the first case in which the expression of a drug transporter of the resistance-nodulation-division family has been shown to be regulated directly by antibiotics.


2004 ◽  
Vol 48 (4) ◽  
pp. 1128-1135 ◽  
Author(s):  
Y. Y. Chan ◽  
T. M. C. Tan ◽  
Y. M. Ong ◽  
K. L. Chua

ABSTRACT Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents, including β-lactams, aminoglycosides, macrolides, and polymyxins. An operon, bpeR-bpeA-bpeB-oprB, which encodes a putative repressor, a membrane fusion protein, an inner membrane protein, and an outer membrane protein, respectively, of a multidrug efflux pump of the resistance-nodulation-division family was identified in B. pseudomallei. The divergently transcribed bpeR gene encodes a putative repressor protein of the TetR family which probably regulates the expression of the bpeAB-oprB gene cluster. Comparison of the MICs and minimal bactericidal concentrations of antimicrobials for bpeAB deletion mutant KHWΔbpeAB and its isogenic wild-type parent, KHW, showed that the B. pseudomallei BpeAB-OprB pump is responsible for the efflux of the aminoglycosides gentamicin and streptomycin, the macrolide erythromycin, and the dye acriflavine. Antibiotic efflux by the BpeAB-OprB pump was dependent on a proton gradient and differs from that by the AmrAB-OprA pump in that it did not efflux the aminoglycoside spectinomycin or the macrolide clarithromycin. The broad-spectrum efflux pump inhibitor MC-207,110 did not potentiate the effectiveness of the antimicrobials erythromycin and streptomycin in B. pseudomallei.


Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1494
Author(s):  
Jenifer Cuesta Bernal ◽  
Jasmin El-Delik ◽  
Stephan Göttig ◽  
Klaas M. Pos

Gram-negative Tripartite Resistance Nodulation and cell Division (RND) superfamily efflux pumps confer various functions, including multidrug and bile salt resistance, quorum-sensing, virulence and can influence the rate of mutations on the chromosome. Multidrug RND efflux systems are often characterized by a wide substrate specificity. Similarly to many other RND efflux pump systems, AcrAD-TolC confers resistance toward SDS, novobiocin and deoxycholate. In contrast to the other pumps, however, it in addition confers resistance against aminoglycosides and dianionic β-lactams, such as sulbenicillin, aztreonam and carbenicillin. Here, we could show that AcrD from Salmonella typhimurium confers resistance toward several hitherto unreported AcrD substrates such as temocillin, dicloxacillin, cefazolin and fusidic acid. In order to address the molecular determinants of the S. typhimurium AcrD substrate specificity, we conducted substitution analyses in the putative access and deep binding pockets and in the TM1/TM2 groove region. The variants were tested in E. coli ΔacrBΔacrD against β-lactams oxacillin, carbenicillin, aztreonam and temocillin. Deep binding pocket variants N136A, D276A and Y327A; access pocket variant R625A; and variants with substitutions in the groove region between TM1 and TM2 conferred a sensitive phenotype and might, therefore, be involved in anionic β-lactam export. In contrast, lower susceptibilities were observed for E. coli cells harbouring deep binding pocket variants T139A, D176A, S180A, F609A, T611A and F627A and the TM1/TM2 groove variant I337A. This study provides the first insights of side chains involved in drug binding and transport for AcrD from S. typhimurium.


2002 ◽  
Vol 46 (7) ◽  
pp. 2124-2131 ◽  
Author(s):  
Jun Lin ◽  
Linda Overbye Michel ◽  
Qijing Zhang

ABSTRACT Campylobacter jejuni, a gram-negative organism causing gastroenteritis in humans, is increasingly resistant to antibiotics. However, little is known about the drug efflux mechanisms in this pathogen. Here we characterized an efflux pump encoded by a three-gene operon (designated cmeABC) that contributes to multidrug resistance in C. jejuni 81-176. CmeABC shares significant sequence and structural homology with known tripartite multidrug efflux pumps in other gram-negative bacteria, and it consists of a periplasmic fusion protein (CmeA), an inner membrane efflux transporter belonging to the resistance-nodulation-cell division superfamily (CmeB), and an outer membrane protein (CmeC). Immunoblotting using CmeABC-specific antibodies demonstrated that cmeABC was expressed in wild-type 81-176; however, an isogenic mutant (9B6) with a transposon insertion in the cmeB gene showed impaired production of CmeB and CmeC. Compared to wild-type 81-176, 9B6 showed a 2- to 4,000-fold decrease in resistance to a range of antibiotics, heavy metals, bile salts, and other antimicrobial agents. Accumulation assays demonstrated that significantly more ethidium bromide and ciprofloxacin accumulated in mutant 9B6 than in wild-type 81-176. Addition of carbonyl cyanide m-chlorophenylhydrazone, an efflux pump inhibitor, increased the accumulation of ciprofloxacin in wild-type 81-176 to the level of mutant 9B6. PCR and immunoblotting analysis also showed that cmeABC was broadly distributed in various C. jejuni isolates and constitutively expressed in wild-type strains. Together, these findings formally establish that CmeABC functions as a tripartite multidrug efflux pump that contributes to the intrinsic resistance of C. jejuni to a broad range of structurally unrelated antimicrobial agents.


2015 ◽  
Vol 197 (20) ◽  
pp. 3255-3264 ◽  
Author(s):  
Ketaki Soparkar ◽  
Alfred D. Kinana ◽  
Jon W. Weeks ◽  
Keith D. Morrison ◽  
Hiroshi Nikaido ◽  
...  

ABSTRACTThe AcrB protein ofEscherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions—Y49S, V127A, V127G, D153E, and G288C—mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions—F453C and L486W—were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux ofN-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain.IMPORTANCEThe AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Martijn Zwama ◽  
Akihito Yamaguchi ◽  
Kunihiko Nishino

Abstract Multidrug resistance in Gram-negative bacteria can arise by the over-expression of multidrug efflux pumps, which can extrude a wide range of antibiotics. Here we describe the ancestral Haemophilus influenzae efflux pump AcrB (AcrB-Hi). We performed a phylogenetic analysis of hundreds of RND-type transporters. We found that AcrB-Hi is a relatively ancient efflux pump, which nonetheless can export the same range of antibiotics as its evolved colleague from Escherichia coli. AcrB-Hi was not inhibited by the efflux pump inhibitor ABI-PP, and could export bile salts weakly. This points to an environmental adaptation of RND transporters. We also explain the sensitivity of H. influenzae cells to β-lactams and novobiocin by the outer membrane porin OmpP2. This porin counterbalances the AcrB-Hi efflux by leaking the drugs back into the cells. We hypothesise that multidrug recognition by RND-type pumps is not an evolutionarily acquired ability, and has been present since ancient promiscuous transporters.


2009 ◽  
Vol 192 (5) ◽  
pp. 1377-1386 ◽  
Author(s):  
Hong-Suk Kim ◽  
Daniel Nagore ◽  
Hiroshi Nikaido

ABSTRACT RND (resistance-nodulation-division) family transporters in Gram-negative bacteria frequently pump out a wide range of inhibitors and often contribute to multidrug resistance to antibiotics and biocides. An archetypal RND pump of Escherichia coli, AcrB, is known to exist as a homotrimer, and this construction is essential for drug pumping through the functionally rotating mechanism. MdtBC, however, appears different because two pump genes coexist within a single operon, and genetic deletion data suggest that both pumps must be expressed in order for the drug efflux to occur. We have expressed the corresponding genes, with one of them in a His-tagged form. Copurification of MdtB and MdtC under these conditions showed that they form a complex, with an average stoichiometry of 2:1. Unequivocal evidence that only the trimer containing two B protomers and one C protomer is active was obtained by expressing all possible combinations of B and C in covalently linked forms. Finally, conversion into alanine of the residues, known to form a proton translocation pathway in AcrB, inactivated transport only when made in MdtB, not when made in MdtC, a result suggesting that MdtC plays a different role not directly involved in drug binding and extrusion.


2015 ◽  
Vol 396 (9-10) ◽  
pp. 1073-1082 ◽  
Author(s):  
Dijun Du ◽  
Jarrod Voss ◽  
Zhao Wang ◽  
Wah Chiu ◽  
Ben F. Luisi

Abstract Microorganisms encode several classes of transmembrane molecular pumps that can expel a wide range of chemically distinct toxic substances. These machines contribute to the capacity of the organisms to withstand harsh environments, and they help to confer resistance against clinical antimicrobial agents. In Gram-negative bacteria, some of the pumps comprise tripartite assemblies that actively transport drugs and other harmful compounds across the cell envelope. We describe recent structural and functional data that have provided insights into the architecture and transport mechanism of the AcrA-AcrB-TolC pump of Escherichia coli. This multidrug efflux pump is powered by proton electrochemical gradients through the activity of AcrB, a member of the resistance/nodulation/cell division (RND) transporter family. Crystallographic data reveal how the small protein AcrZ binds to AcrB in a concave surface of the transmembrane domain, and we discuss how this interaction may affect the efflux activities of the transporter.


2019 ◽  
Author(s):  
Dijun Du ◽  
Arthur Neuberger ◽  
Mona Wu Orr ◽  
Catherine E. Newman ◽  
Pin-Chia Hsu ◽  
...  

AbstractThe small protein AcrZ in Escherichia coli interacts with the transmembrane portion of the multidrug efflux pump AcrB and increases the resistance of the bacterium to a subset of the antibiotic substrates of that transporter. It is not clear how the physical association of the two proteins selectively changes activity of the pump for defined substrates. Here, we report cryo-EM structures of AcrB and the AcrBZ complex in lipid environments, and comparisons suggest that conformational changes occur in the drug binding pocket as a result of AcrZ binding. Simulations indicate that cardiolipin preferentially interacts with the AcrBZ complex, due to increased contact surface, and we observe that the drug sensitivity of bacteria lacking AcrZ is exacerbated when combined with cardiolipin deficiency. Taken together, the data suggest that AcrZ and lipid cooperate to allosterically modulate the activity of AcrB. This mode of regulation by a small protein and lipid may occur for other membrane proteins.


Sign in / Sign up

Export Citation Format

Share Document