scholarly journals Genotyping cognate Plasmodium falciparum in humans and mosquitoes to estimate onward transmission of asymptomatic infections

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kelsey M. Sumner ◽  
Elizabeth Freedman ◽  
Lucy Abel ◽  
Andrew Obala ◽  
Brian W. Pence ◽  
...  

AbstractMalaria control may be enhanced by targeting reservoirs of Plasmodium falciparum transmission. One putative reservoir is asymptomatic malaria infections and the scale of their contribution to transmission in natural settings is not known. We assess the contribution of asymptomatic malaria to onward transmission using a 14-month longitudinal cohort of 239 participants in a high transmission site in Western Kenya. We identify P. falciparum in asymptomatically- and symptomatically-infected participants and naturally-fed mosquitoes from their households, genotype all parasites using deep sequencing of the parasite genes pfama1 and pfcsp, and use haplotypes to infer participant-to-mosquito transmission through a probabilistic model. In 1,242 infections (1,039 in people and 203 in mosquitoes), we observe 229 (pfcsp) and 348 (pfama1) unique parasite haplotypes. Using these to link human and mosquito infections, compared with symptomatic infections, asymptomatic infections more than double the odds of transmission to a mosquito among people with both infection types (Odds Ratio: 2.56; 95% Confidence Interval (CI): 1.36–4.81) and among all participants (OR 2.66; 95% CI: 2.05–3.47). Overall, 94.6% (95% CI: 93.1–95.8%) of mosquito infections likely resulted from asymptomatic infections. In high transmission areas, asymptomatic infections are the major contributor to mosquito infections and may be targeted as a component of transmission reduction.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elifaged Hailemeskel ◽  
Surafel K Tebeje ◽  
Sinknesh W. Behaksra ◽  
Girma Shumie ◽  
Getasew Shitaye ◽  
...  

Abstract Background As countries move to malaria elimination, detecting and targeting asymptomatic malaria infections might be needed. Here, the epidemiology and detectability of asymptomatic Plasmodium falciparum and Plasmodium vivax infections were investigated in different transmission settings in Ethiopia. Method: A total of 1093 dried blood spot (DBS) samples were collected from afebrile and apparently healthy individuals across ten study sites in Ethiopia from 2016 to 2020. Of these, 862 were from community and 231 from school based cross-sectional surveys. Malaria infection status was determined by microscopy or rapid diagnostics tests (RDT) and 18S rRNA-based nested PCR (nPCR). The annual parasite index (API) was used to classify endemicity as low (API > 0 and < 5), moderate (API ≥ 5 and < 100) and high transmission (API ≥ 100) and detectability of infections was assessed in these settings. Results In community surveys, the overall prevalence of asymptomatic Plasmodium infections by microscopy/RDT, nPCR and all methods combined was 12.2% (105/860), 21.6% (183/846) and 24.1% (208/862), respectively. The proportion of nPCR positive infections that was detectable by microscopy/RDT was 48.7% (73/150) for P. falciparum and 4.6% (2/44) for P. vivax. Compared to low transmission settings, the likelihood of detecting infections by microscopy/RDT was increased in moderate (Adjusted odds ratio [AOR]: 3.4; 95% confidence interval [95% CI] 1.6–7.2, P = 0.002) and high endemic settings (AOR = 5.1; 95% CI 2.6–9.9, P < 0.001). After adjustment for site and correlation between observations from the same survey, the likelihood of detecting asymptomatic infections by microscopy/RDT (AOR per year increase = 0.95, 95% CI 0.9–1.0, P = 0.013) declined with age. Conclusions Conventional diagnostics missed nearly half of the asymptomatic Plasmodium reservoir detected by nPCR. The detectability of infections was particularly low in older age groups and low transmission settings. These findings highlight the need for sensitive diagnostic tools to detect the entire parasite reservoir and potential infection transmitters.


2004 ◽  
Vol 72 (2) ◽  
pp. 735-741 ◽  
Author(s):  
Eunita A. Ohas ◽  
John H. Adams ◽  
John N. Waitumbi ◽  
Alloys S. S. Orago ◽  
Arnoldo Barbosa ◽  
...  

ABSTRACT Region II of the 175-kDa erythrocyte-binding antigen (EBA-175RII) of Plasmodium falciparum is functionally important in sialic acid-dependent erythrocyte invasion and is considered a prime target for an invasion-blocking vaccine. The objectives of this study were to (i) determine the prevalence of anti-EBA-175RII antibodies in a naturally exposed population, (ii) determine whether naturally acquired antibodies have a functional role by inhibiting binding of EBA-175RII to erythrocytes, and (iii) determine whether antibodies against EBA-175RII correlate with immunity to clinical malaria. We treated 301 lifelong residents of an area of malaria holoendemicity in western Kenya for malaria, monitored them during a high-transmission season, and identified 33 individuals who were asymptomatic despite parasitemia (clinically immune). We also identified 50 clinically susceptible individuals to serve as controls. These 83 individuals were treated and monitored again during the subsequent low-transmission season. Anti-EBA-175RII antibodies were present in 98.7% of the individuals studied. The antibody levels were relatively stable between the beginning and end of the high-transmission season and correlated with the plasma EBA-175RII erythrocyte-binding-inhibitory activity. There was no difference in anti-EBA-175RII levels or plasma EBA-175RII erythrocyte-binding-inhibitory activity between clinically immune and clinically susceptible groups. However, these parameters were higher in nonparasitemic than in parasitemic individuals at enrollment. These results suggest that although antibodies against EBA-175RII may be effective in suppressing some of the wild parasite strains, EBA-175RII is unlikely to be effective as a monovalent vaccine against malaria, perhaps due to allelic heterogeneity and/or presence of sialic acid-independent strains.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Christina Salgado ◽  
George Ayodo ◽  
Michael D. Macklin ◽  
Meetha P. Gould ◽  
Srinivas Nallandhighal ◽  
...  

Abstract Background Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. Methods In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa–Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. Results The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11–15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. Conclusions This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Chonge Kitojo ◽  
Frank Chacky ◽  
Emmanuel S. Kigadye ◽  
Joseph P. Mugasa ◽  
Abdallah Lusasi ◽  
...  

Abstract Background In areas of high transmission, malaria in pregnancy (MiP) primarily causes asymptomatic infections; these infections nonetheless increase the risk of adverse maternal and fetal outcomes. In 2014, Tanzania initiated a single screening and treatment (SST) strategy for all pregnant women at their first antenatal care (ANC) visit using malaria rapid diagnostic tests (RDT) for surveillance purposes. However, there is paucity of data on the effectiveness of SST in the prevention of MiP. The objective of this study was to estimate the number of asymptomatic infections among pregnant women detected by SST, which would have been missed in the absence of the policy. Methods Data from pregnant women attending their first ANC visits between October 2017 and June 2018, including gestational age, history of fever, and RDT results, were abstracted from ANC registers in eight health centres in two randomly selected districts, Kilwa and Lindi, in Lindi Region. The proportion of symptomatic (with history of fever in the past 48 h) and asymptomatic pregnant women with positive RDTs were calculated and stratified by trimester (first, second and third). The study areas were categorized as low transmission with prevalence < 10% or moderate/high with ≥ 10%. Results Over the study period, 1,845 women attended their first ANC visits; 22.1% were in the first trimester (< 12 weeks gestation age). Overall 15.0% of the women had positive RDTs, and there was a trend towards higher malaria prevalence in the first (15.9%) and second (15.2%) trimesters, compared to the third (7.1%), although the differences were not statistically significant (p = 0.07). In total, 6.9% of women reported fever within the past 48 h and, of these, 96.1% were RDT positive. For every 100 pregnant women in the moderate/high and low transmission areas, SST identified 60 and 26 pregnant women, respectively, with asymptomatic infections that would have otherwise been missed. Among the 15.9% of women detected in the first trimester, 50.7% were asymptomatic. Conclusion In areas of moderate/high transmission, many infected women were asymptomatic, and would have been missed in the absence of SST. The benefits on maternal and fetal birth outcomes of identifying these infections depend heavily on the protection afforded by treatment, which is likely to be greatest for women presenting in the first trimester when intermittent preventive treatment (IPTp) with sulfadoxine-pyrimethamine (SP) is contraindicated, and in areas with high SP resistance, such as most parts of Tanzania. An evaluation of the impact and cost-effectiveness of SST across different transmission strata is warranted.


2020 ◽  
Author(s):  
Elifaged Hailemeskel ◽  
Surafel K Tebeje ◽  
Sinknesh Behaksra ◽  
Girma Shumie ◽  
Getasew Shitaye ◽  
...  

Abstract Background: As countries move to malaria elimination, detecting and targeting asymptomatic malaria infections might be needed. Here, we investigated the epidemiology and detectability of asymptomatic Plasmodium falciparum and P. vivax infections in different transmission settings in Ethiopia.Method: A total of 1093 dried blood spot (DBS) samples were collected from afebrile and apparently healthy individuals across ten study sites in Ethiopia from 2016 to 2020. Of these, 862 were from community and 231 from school based cross-sectional surveys. Malaria infection status was determined by microscopy or rapid diagnostics tests (RDT) and 18S rRNA based nested PCR (nPCR). The annual parasite index (API) was used to classify endemicity as low (API>0 and<5), moderate (API ≥5 and <100) and high transmission (API≥100) and detectability of infections was assessed in these settings. Results: In community surveys, the overall prevalence of asymptomatic Plasmodium infections by microscopy/RDT, nPCR and all methods combined was 12.2% (105/860), 21.6% (183/846) and 24.1% (208/862), respectively. The proportion of nPCR positive infections that was detectable by microscopy/RDT was 48.7% (73/150) for P. falciparum and 4.6% (2/44) for P. vivax. Compared to low transmission settings, the likelihood of detecting infections by microscopy/RDT was increased in moderate (Adjusted odds ratio [AOR]: 3.4; 95% confidence interval [95%CI]:1.6-7.2, P=0.002) and high endemic settings (AOR=5.1; 95%CI=2.6-9.9, P<0.001). After adjustment for site and correlation between observations from the same survey, the likelihood of detecting asymptomatic infections by microscopy/RDT (AOR per year increase = 0.95, 95%CI=0.9-1.0, P=0.013) declined with age.Conclusion: Conventional diagnostics missed nearly half of the asymptomatic Plasmodium reservoir detected by nPCR. The detectability of infections was particularly low in older age groups and low transmission settings. These findings highlight the need for sensitive diagnostic tools to detect the entire parasite reservoir and potential infection transmitters.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kelsey M Sumner ◽  
Judith N Mangeni ◽  
Andrew A Obala ◽  
Elizabeth Freedman ◽  
Lucy Abel ◽  
...  

Background:Asymptomatic Plasmodium falciparum infections are common in sub-Saharan Africa, but their effect on subsequent symptomaticity is incompletely understood.Methods:In a 29-month cohort of 268 people in Western Kenya, we investigated the association between asymptomatic P. falciparum and subsequent symptomatic malaria with frailty Cox models.Results:Compared to being uninfected, asymptomatic infections were associated with an increased 1-month likelihood of symptomatic malaria [adjusted Hazard Ratio (aHR):2.61, 95%CI:2.05-3.33], and this association was modified by sex, with females [aHR:3.71, 95%CI:2.62-5.24] at higher risk for symptomaticity than males [aHR:1.76, 95%CI:1.24-2.50]. This increased symptomatic malaria risk was observed for asymptomatic infections of all densities and in people of all ages. Long-term risk was attenuated but still present in children under 5 [29-month aHR:1.38, 95%CI:1.05-1.81].Conclusions:In this high-transmission setting, asymptomatic P. falciparum can be quickly followed by symptoms and may be targeted to reduce the incidence of symptomatic illness.Funding:This work was supported by the National Institute of Allergy and Infectious Diseases (R21AI126024 to WPO, R01AI146849 to WPO and SMT).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Colins O. Oduma ◽  
Sidney Ogolla ◽  
Harrysone Atieli ◽  
Bartholomew N. Ondigo ◽  
Ming-Chieh Lee ◽  
...  

Abstract Background Transmission stemming from asymptomatic infections is increasingly being recognized as a threat to malaria elimination. In many regions, malaria transmission is seasonal. It is not well understood whether Plasmodium falciparum modulates its investment in transmission to coincide with seasonal vector abundance. Methods We sampled 1116 asymptomatic individuals in the wet season, when vectors are abundant, and 1743 in the dry season, in two sites in western Kenya, representing different transmission intensities (Chulaimbo, moderate transmission, and Homa Bay, low transmission). Blood samples were screened for P. falciparum by qPCR, and gametocytes by pfs25 RT-qPCR. Results Parasite prevalence by qPCR was 27.1% (Chulaimbo, dry), 48.2% (Chulaimbo, wet), 9.4% (Homabay, dry), and 7.8% (Homabay, wet). Mean parasite densities did not differ between seasons (P = 0.562). pfs25 transcripts were detected in 119/456 (26.1%) of infections. In the wet season, fewer infections harbored detectable gametocytes (22.3% vs. 33.8%, P = 0.009), but densities were 3-fold higher (wet: 3.46 transcripts/uL, dry: 1.05 transcripts/uL, P < 0.001). In the dry season, 4.0% of infections carried gametocytes at moderate-to-high densities likely infective (> 1 gametocyte per 2 uL blood), compared to 7.9% in the wet season. Children aged 5–15 years harbored 76.7% of infections with gametocytes at moderate-to-high densities. Conclusions Parasites increase their investment in transmission in the wet season, reflected by higher gametocyte densities. Despite increased gametocyte densities, parasite density remained similar across seasons and were often below the limit of detection of microscopy or rapid diagnostic test, thus a large proportion of infective infections would escape population screening in the wet season. Seasonal changes of gametocytemia in asymptomatic infections need to be considered when designing malaria control measures.


2006 ◽  
Vol 74 (7) ◽  
pp. 3904-3911 ◽  
Author(s):  
Matthias Rottmann ◽  
Thomas Lavstsen ◽  
Joseph Paschal Mugasa ◽  
Mirjam Kaestli ◽  
Anja T. R. Jensen ◽  
...  

ABSTRACT The var gene family of Plasmodium falciparum encodes the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is considered an important pathogenicity factor in P. falciparum infection because it mediates cytoadherence to host cell endothelial receptors. var genes can be grouped into three major groups, A, B, and C, and the conserved var genes, var1-4, according to sequence similarities in coding and noncoding upstream regions. Using real-time quantitative PCR in a study conducted in Tanzania, the var transcript abundances of the different var gene groups were compared among patients with severe, uncomplicated, and asymptomatic malaria. Transcripts of var group A and B genes were more abundant in patients with severe malaria than in patients with uncomplicated malaria. In general, the transcript abundances of var group A and B genes were higher for children with clinical malaria than for children with asymptomatic infections. The var group C and var1-like transcript abundances were similar between the three sample groups. A transcript abundance pattern similar to that for var group A was observed for var2csa and var3-like genes. These results suggest that substantial and systematic differences in var gene expression exist between different clinical presentations.


Sign in / Sign up

Export Citation Format

Share Document