scholarly journals A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Yongjun Zheng ◽  
Jimmy Lee ◽  
Jieyu Hua ◽  
Shilong Li ◽  
...  

AbstractEffective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.

2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


2016 ◽  
Vol 18 (4) ◽  
pp. 411-419 ◽  
Author(s):  
Eva L. Arantes ◽  
Nathalia Dragano ◽  
Albina Ramalho ◽  
Daniele Vitorino ◽  
Gabriela F. de-Souza ◽  
...  

Background: The development of methods for improving skin wound healing may have an impact on the outcomes of a number of medical conditions. The topical use of polyunsaturated fatty acids (PUFAs) can accelerate skin wound healing through mechanisms that involve, at least in part, the modulation of inflammatory activity. Purpose: We evaluated whether G-protein-coupled receptor 120 (GPR120), a recently identified receptor for docosahexaenoic acid (DHA) with anti-inflammatory activity, is expressed in the skin and responds to topical DHA. Method: Male Wistar rats were submitted to an 8.0-mm wound on the back and were immediately administered a topical treatment of a solution containing 30 μM of DHA once a day. The healing process was photodocumented, and tissues were collected on Days 5, 9, and 15 for protein and RNA analyses and histological evaluation. Results: GPR120 was expressed in the intact skin and in the wound. Keratinocytes expressed the most skin GPR120, while virtually no expression was detected in fibroblasts. Upon DHA topical treatment, wound healing was significantly accelerated and was accompanied by the molecular activation of GPR120, as determined by its association with β-arrestin-2. In addition, DHA promoted a reduction in the expression of interleukin (IL) 1β and an increase in the expression of IL-6. Furthermore, there was a significant increase in expression of transforming growth factor β (TGF-β) and the keratinocyte marker involucrin. Discussion: Topical DHA improved skin wound healing. The activation of GPR120 is potentially involved in this process.


2021 ◽  
Author(s):  
Jagadeeshaprasad Mashanipalya ◽  
Prem Kumar Govindappa ◽  
Amanda Nelson ◽  
Mark Noble ◽  
John Elfar

Abstract The discovery of ways to enhance skin healing is of great importance due to the frequency and severity of skin wounds. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker, greatly enhances skin wound healing. Benefits include faster wound closure, restoration of normal-appearing skin architecture and epidermal thickness, increased vascularization and increases in K14+ keratinocytes. Hair follicle number was increased, both histologically and by analysis of K15 and K17 expression. Levels of vimentin (which marks fibroblasts) and α-smooth muscle actin (α-SMA, which marks collagen-producing myofibroblasts) increased, as did α-SMA+ cell numbers. 4-AP also increased numbers of axons and S-100+ Schwann cells, and increased expression of p75-NTR and SOX10. Treatment also increased levels of nerve growth factor, transforming growth factor-β, Substance P and PGP9.5, important modulators of wound healing. As 4-AP is already used for treatment of multiple sclerosis and other chronic neurological syndromes, it has strong potential for rapid translational development.


2020 ◽  
Author(s):  
Sylwia Machcinska ◽  
Marta Kopcewicz ◽  
Joanna Bukowska ◽  
Katarzyna Walendzik ◽  
Barbara Gawronska-Kozak

ABSTRACTHypoxia and hypoxia-regulated factors [e. g., hypoxia-inducible factor-1α (Hif-1α), factor inhibiting Hif-1α (Fih-1), thioredoxin-1 (Trx-1), aryl hydrocarbon receptor nuclear translocator 2 (Arnt-2)] have essential roles in skin wound healing. Using Foxn1−/− mice that can heal skin injuries in a unique scarless manner, we investigated the interaction between Foxn1 and hypoxia-regulated factors. The Foxn1−/− mice displayed impairments in the regulation of Hif-1α, Trx-1 and Fih-1 but not Arnt-2 during the healing process. An analysis of wounded skin showed that the skin of the Foxn1−/− mice healed in a scarless manner, displaying rapid re-epithelialization and an increase in transforming growth factor β (Tgfβ-3) and collagen III expression. An in vitro analysis revealed that Foxn1 overexpression in keratinocytes isolated from the skin of the Foxn1−/− mice led to reduced Hif-1α expression in normoxic but not hypoxic cultures and inhibited Fih-1 expression exclusively under hypoxic conditions. These data indicate that in the skin, Foxn1 affects hypoxia-regulated factors that control the wound healing process and suggest that under normoxic conditions, Foxn1 is a limiting factor for Hif-1α.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1385
Author(s):  
Haisheng Lin ◽  
Zhihong Zheng ◽  
Jianjun Yuan ◽  
Chaohua Zhang ◽  
Wenhong Cao ◽  
...  

Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.


2003 ◽  
Vol 5 (8) ◽  
pp. 1-22 ◽  
Author(s):  
Steven R. Beanes ◽  
Catherine Dang ◽  
Chia Soo ◽  
Kang Ting

Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor β (TGF-β), a cytokine secreted by several different cell types involved in healing. TGF-β has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-β in normal and impaired wound-healing models. It also explores TGF-β activity in scarless foetal wound healing. Knowledge of TGF-β function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.


Sign in / Sign up

Export Citation Format

Share Document