scholarly journals Collagen Peptides Derived from Sipunculus nudus Accelerate Wound Healing

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1385
Author(s):  
Haisheng Lin ◽  
Zhihong Zheng ◽  
Jianjun Yuan ◽  
Chaohua Zhang ◽  
Wenhong Cao ◽  
...  

Marine collagen peptides have high potential in promoting skin wound healing. This study aimed to investigate wound healing activity of collagen peptides derived from Sipunculus nudus (SNCP). The effects of SNCP on promoting healing were studied through a whole cortex wound model in mice. Results showed that SNCP consisted of peptides with a molecular weight less than 5 kDa accounted for 81.95%, rich in Gly and Arg. SNCP possessed outstanding capacity to induce human umbilical vein endothelial cells (HUVEC), human immortalized keratinocytes (HaCaT) and human skin fibroblasts (HSF) cells proliferation and migration in vitro. In vivo, SNCP could markedly improve the healing rate and shorten the scab removal time, possessing a scar-free healing effect. Compared with the negative control group, the expression level of tumor necrosis factor-α, interleukin-1β and transforming growth factor-β1 (TGF-β1) in the SNCP group was significantly down-regulated at 7 days post-wounding (p < 0.01). Moreover, the mRNA level of mothers against decapentaplegic homolog 7 (Smad7) in SNCP group was up-regulated (p < 0.01); in contrast, type II TGF-β receptors, collagen I and α-smooth muscle actin were significantly down-regulated at 28 days (p < 0.01). These results indicate that SNCP possessed excellent activity of accelerating wound healing and inhibiting scar formation, and its mechanism was closely related to reducing inflammation, improving collagen deposition and recombination and blockade of the TGF-β/Smads signal pathway. Therefore, SNCP may have promising clinical applications in skin wound repair and scar inhibition.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jian Zhang ◽  
Yongjun Zheng ◽  
Jimmy Lee ◽  
Jieyu Hua ◽  
Shilong Li ◽  
...  

AbstractEffective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.


2012 ◽  
Vol 302 (8) ◽  
pp. C1213-C1225 ◽  
Author(s):  
Chen Zhang ◽  
Chek Kun Tan ◽  
Craig McFarlane ◽  
Mridula Sharma ◽  
Nguan Soon Tan ◽  
...  

Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.


2021 ◽  
Vol 12 (4) ◽  
pp. 594-598
Author(s):  
S. B. Pavlov ◽  
O. B. Litvinova ◽  
N. M. Babenko

Chronic kidney disease negatively affects the morphofunctional state of all organs due to hemodynamic and metabolic disorders. Changes in the content of cytokines observed in kidney diseases, which regulate the processes of inflammation and tissue repair, can complicate the course of the wound process. This research aimed to study disorders in the process of skin wound repair due to changes in the dynamics of production of interleukins IL-1β, IL-6, IL-10, IL-4, growth factors bFGF and VEGF in animals with experimental chronic kidney disease. The levels of interleukins and growth factors were determined on the 7th, 14th and 28th days after surgical modeling of wounds in the blood of rats with experimental chronic kidney disease and animals of the control group. To assess the dynamics and quality of wound healing, a semi-quantitative histological analysis was performed. The study showed an increase in the content of pro-inflammatory interleukins in the group of sick rats: on the 7th day the level of IL-1β was 1.19 times higher, and IL-6 – 1.55 times, on the 14th day the level of IL-1β was 1.37 times in comparison with the control group. The maximum increase in the concentration of anti-inflammatory interleukins was noted on the 28th day: IL-4 was 2.10 times higher, IL-10 – 1.39 times higher than in the control group. The content of bFGF and VEGF in animals of the control group reached its maximum on the 7th day, and in animals with chronic kidney disease – on the 15th day after surgery. Semi-quantitative histological analysis showed a decrease in indicators in the group of sick animals: the number of fibroblasts and collagen deposition – on the 7th day, reepithelialization – on the 28th day. A persistent increase in the number of polymorphonuclear leukocytes was also noted at all periods of the experiment: by 1.38, 1.99, and 9.82 times – on the 7th, 14th, and 28th days, respectively. The study showed that the dynamics of the production of interleukins and growth factors were impaired in rats with chronic kidney disease. In the process of damage regeneration in sick animals, pro-inflammatory mechanisms prevailed with the involvement of a large number of immunocompetent cells, as a result, skin wounds took longer to heal.


2021 ◽  
Author(s):  
Jagadeeshaprasad Mashanipalya ◽  
Prem Kumar Govindappa ◽  
Amanda Nelson ◽  
Mark Noble ◽  
John Elfar

Abstract The discovery of ways to enhance skin healing is of great importance due to the frequency and severity of skin wounds. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker, greatly enhances skin wound healing. Benefits include faster wound closure, restoration of normal-appearing skin architecture and epidermal thickness, increased vascularization and increases in K14+ keratinocytes. Hair follicle number was increased, both histologically and by analysis of K15 and K17 expression. Levels of vimentin (which marks fibroblasts) and α-smooth muscle actin (α-SMA, which marks collagen-producing myofibroblasts) increased, as did α-SMA+ cell numbers. 4-AP also increased numbers of axons and S-100+ Schwann cells, and increased expression of p75-NTR and SOX10. Treatment also increased levels of nerve growth factor, transforming growth factor-β, Substance P and PGP9.5, important modulators of wound healing. As 4-AP is already used for treatment of multiple sclerosis and other chronic neurological syndromes, it has strong potential for rapid translational development.


Medicina ◽  
2020 ◽  
Vol 56 (7) ◽  
pp. 321 ◽  
Author(s):  
Shiro Jimi ◽  
Satoshi Takagi ◽  
Francesco De Francesco ◽  
Motoyasu Miyazaki ◽  
Arman Saparov

Background and objectives: Skin grafting is a method usually used in reconstructive surgery to accelerate skin regeneration. This method results frequently in unexpected scar formations. We previously showed that cutaneous wound-healing in normal mice is accelerated by a micrograft (MG) technique. Presently, clinical trials have been performed utilizing this technology; however, the driving mechanisms behind the beneficial effects of this approach remain unclear. In the present study, we focused on five major tissue reactions in wound-healing, namely, regeneration, migration, granulation, neovascularization and contraction. Methods: Morphometrical analysis was performed using tissue samples from the dorsal wounds of mice. Granulation tissue formation, neovascularization and epithelial healing were examined. Results: The wound area correlated well with granulation sizes and neovascularization densities in the granulation tissue. Vascular distribution analysis in the granulation tissue indicated that neovessels extended and reached the subepidermal area in the MG group but was only halfway developed in the control group. Moreover, epithelialization with regeneration and migration was augmented by MG. Myofibroblast is a known machinery for wound contraction that uses α-smooth muscle actin filaments. Their distribution in the granulation tissue was primarily found beneath the regenerated epithelium and was significantly progressed in the MG group. Conclusions: These findings indicated that MG accelerated a series of wound-healing reactions and could be useful for treating intractable wounds in clinical situations.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 779
Author(s):  
Joung-Hee Kim ◽  
Eun-Yeong Kim ◽  
Kyu Jin Chung ◽  
Jung-Hee Lee ◽  
Hee-Jung Choi ◽  
...  

Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.


2021 ◽  
Vol 12 ◽  
pp. e9-e9
Author(s):  
Abdollah Amini ◽  
Hasan Soleimani ◽  
Fatemehalsadat Rezaei ◽  
Seyed Kamran Ghoreishi ◽  
Sufan Chien ◽  
...  

Introduction: Abnormal wound repair is a cause for considerable expense, as well as patient morbidity and mortality. Here, we investigated the combined impact of photobiomodulation (PBM) and curcumin on a rat experimental model of an acute skin wound. Methods: A round full-thickness wound was created on the back of each rat. We divided the rats into the following four groups. Group one was the control group. Group two received pulse wave (PW) PBM at a dose of 890 nm, 80 Hz, and 0.2 J/cm2 . Group 3 received 40 mg/kg curcumin by gastric gavage and group 4 were treated with PWPBM + curcumin. We measured the wound area on days 4, 7, and 15, and performed microbiological and tensiometric examinations. Results: There was markedly improved wound contraction in the curcumin (7.5 ± 0.57; P=0.000), PBM (8.5 ± 1.2; P=0.000), and PBM + curcumin (14.5 ± 4.3; P=0.002) groups relative to the control group (25 ± 6). PBM (100 ± 7.3; P=0.005), and PBM + curcumin (98 ± 6; P=0.005) groups meaningfully improved tensile strength relative to the control group (61 ± 8.2). On day 15, the PBM (10 ± 5; P=0.000), curcumin (14 ± 4.5, P=0.000), and PBM + curcumin (27.3 ± 8.3; P=0.000) groups meaningfully decreased microbial flora relative to the control group (95 ± 6). Conclusion: We concluded that the PBM and PBM + curcumin groups meaningfully accelerated wound healing of the acute skin wound in the rats. The results of the PBM group were statistically more effective than the curcumin alone and PBM + curcumin-treated groups.


2018 ◽  
Vol 19 (11) ◽  
pp. 3660 ◽  
Author(s):  
Jun Park ◽  
Myoung-Sook Shin ◽  
Gwi Hwang ◽  
Noriko Yamabe ◽  
Jeong-Eun Yoo ◽  
...  

Shiunko ointment is composed of five ingredients including Lithospermi Radix (LR), Angelicae Gigantis Radix, sesame seed oil, beeswax, and swine oil. It is externally applied as a treatment for a wide range of skin conditions such as eczema, psoriasis, hair loss, burns, topical wounds, and atopic dermatitis. Deoxyshikonin is the major angiogenic compound extracted from LR. In this study, we investigated the efficacy of LR extract and deoxyshikonin on impaired wound healing in streptozotocin (STZ)-induced diabetic mice. Treatment with LR extract elevated tube formation in human umbilical vein endothelial cells (HUVECs) and exerted antioxidant activity. An open skin wound was produced on the backs of diabetic mice and was then topically treated with deoxyshikonin or vehicle. In addition, deoxyshikonin promoted tube formation in high glucose conditions exposed to HUVECs, and which may be regulated by increased VEGFR2 expression and phosphorylation of Akt and p38. Our results demonstrate that deoxyshikonin application promoted wound repair in STZ-induced diabetic mice. Collectively, these data suggest that deoxyshikonin is an active ingredient of LR, thereby contributing to wound healing in patients with diabetes.


Author(s):  
Fahim M. Mahmood ◽  
Hayder B. Sahib ◽  
Khalid W. Qassim

Wound healing is a complex physiological and dynamic process required the coordination of numerous cell types and biological processes to regenerate damaged tissue and initiate repair which is dependent on a number of inter-related factors. This study was aimed to demonstrate whether the ?2 receptor has role in wound healing and angiogenesis. A murine wild-type (in vivo), excisional skin wound model was done to demonstrate that activation of ?2AR delay wound repair, twenty-four male albino mice were used to investigate the effect of the drug on experimental wound healing grossly, histo-pathologically and immune-histochemically compared with vehicle-only controls. The results showed that the rate of wound healing was significantly slower in salbutamol group than in control group (P


Author(s):  
Joon M. Jung ◽  
Hae K. Yoon ◽  
Chang J. Jung ◽  
Soo Y. Jo ◽  
Sang G. Hwang ◽  
...  

Cold plasma can be beneficial for promoting skin wound healing and has a high potential of being effectively used in treating various wounds. Our aim was to verify the effect of cold plasma in accelerating wound healing and investigate its underlying mechanism in vitro and in vivo. For the in vivo experiments, 2 full-thickness dermal wounds were created in each mouse (n = 30). While one wound was exposed to 2 daily plasma treatments for 3 min, the other wound served as a control. The wounds were evaluated by imaging and histological analyses at 4, 7, and 11 days post the wound infliction process. Immunohistochemical studies were also performed at the same time points. In vitro proliferation and scratch assay using HaCaT keratinocytes and fibroblasts were performed. The expression levels of wound healing–related genes were analyzed by real-time polymerase chain reaction and western blot analysis. On day 7, the wound healing rates were 53.94% and 63.58% for the control group and the plasma-treated group, respectively. On day 11, these rates were 76.05% and 93.44% for the control and plasma-treated groups, respectively, and the difference between them was significant ( P = .039). Histological analysis demonstrated that plasma treatment promotes the formation of epidermal keratin and granular layers. Immunohistochemical studies also revealed that collagen 1, collagen 3, and alpha-smooth muscle actin appeared more abundantly in the plasma-treated group than in the control group. In vitro, the proliferation of keratinocytes was promoted by plasma exposure. Scratch assay showed that fibroblast exposure to plasma increased their migration. The expression levels of collagen 1, collagen 3, and alpha-smooth muscle actin were elevated upon plasma treatment. In conclusion, cold plasma can accelerate skin wound healing and is well tolerated.


Sign in / Sign up

Export Citation Format

Share Document