scholarly journals Structural insight on assembly-line catalysis in terpene biosynthesis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jacque L. Faylo ◽  
Trevor van Eeuwen ◽  
Hee Jong Kim ◽  
Jose J. Gorbea Colón ◽  
Benjamin A. Garcia ◽  
...  

AbstractFusicoccadiene synthase from Phomopsis amygdali (PaFS) is a unique bifunctional terpenoid synthase that catalyzes the first two steps in the biosynthesis of the diterpene glycoside Fusicoccin A, a mediator of 14-3-3 protein interactions. The prenyltransferase domain of PaFS generates geranylgeranyl diphosphate, which the cyclase domain then utilizes to generate fusicoccadiene, the tricyclic hydrocarbon skeleton of Fusicoccin A. Here, we use cryo-electron microscopy to show that the structure of full-length PaFS consists of a central octameric core of prenyltransferase domains, with the eight cyclase domains radiating outward via flexible linker segments in variable splayed-out positions. Cryo-electron microscopy and chemical crosslinking experiments additionally show that compact conformations can be achieved in which cyclase domains are more closely associated with the prenyltransferase core. This structural analysis provides a framework for understanding substrate channeling, since most of the geranylgeranyl diphosphate generated by the prenyltransferase domains remains on the enzyme for cyclization to form fusicoccadiene.

Author(s):  
Yimin Zhao ◽  
Yizhen Zhao ◽  
Bingquan Peng ◽  
Lei Zhang

: Structural biology develops rapidly as time goes on. Based only on static structure analysis of biomaterials is not enough to satisfy the studies of their functional mechanisms, with a huge obstacle for the dynamic process of biological complexes. The rapid development of cryo-electron microscopy(cryo-EM) technology makes that it is possible to observe the near-atomic resolution structures and dynamic nature of biological macromolecules, in the fields of dynamic characteristics of proteins, protein-protein interactions, molecular recognition, and structure-based design. In this review, we systematically elaborate the contribution of cryo-EM technology in the field of biomaterials such as ribosome motion, membrane protein structure and conformational space, dynamic transmission within the plasma membrane and clinical applications. We also put forwards a new standpoint in the development of cryo-EM technology.


2021 ◽  
Author(s):  
Andrea Fera

Abstract Here surprising results are shown demonstrating a workflow possibly able to exploit the discreet nature of interactions between high-energy electron beams and matter. Isolated protein constructs have been imaged after an original temperature-curing in vacuum, introduced recently for flash-frozen rigid biopolymers, and here applied to flash-frozen oligomers of viral origin. These results, if confirmed, may extend to plastics and bio-oligomers the access to atomic coordinates in one experimental session, when imaged by electron microscopy. Which is the case when imaging semiconductors or other solid materials, provided that the samples are not damaged by the interaction with accelerated electron beams in vacuum. Therefore, potentially, this workflow introduces the possibility of achieving atomic resolution in only one experiment with data only about one individual protein, maybe out of thermodynamic equilibrium. Such data are vital to understand protein-protein interactions. Finally, this workflow offers the possibility, new to cryo-electron microscopy samples, to store a sample indefinitely under liquid nitrogen for imaging the same molecules in more than one experimental session.


Author(s):  
Joachim Frank

Compared with images of negatively stained single particle specimens, those obtained by cryo-electron microscopy have the following new features: (a) higher “signal” variability due to a higher variability of particle orientation; (b) reduced signal/noise ratio (S/N); (c) virtual absence of low-spatial-frequency information related to elastic scattering, due to the properties of the phase contrast transfer function (PCTF); and (d) reduced resolution due to the efforts of the microscopist to boost the PCTF at low spatial frequencies, in his attempt to obtain recognizable particle images.


Author(s):  
Marc J.C. de Jong ◽  
Wim M. Busing ◽  
Max T. Otten

Biological materials damage rapidly in the electron beam, limiting the amount of information that can be obtained in the transmission electron microscope. The discovery that observation at cryo temperatures strongly reduces beam damage (in addition to making it unnecessaiy to use chemical fixatives, dehydration agents and stains, which introduce artefacts) has given an important step forward to preserving the ‘live’ situation and makes it possible to study the relation between function, chemical composition and morphology.Among the many cryo-applications, the most challenging is perhaps the determination of the atomic structure. Henderson and co-workers were able to determine the structure of the purple membrane by electron crystallography, providing an understanding of the membrane's working as a proton pump. As far as understood at present, the main stumbling block in achieving high resolution appears to be a random movement of atoms or molecules in the specimen within a fraction of a second after exposure to the electron beam, which destroys the highest-resolution detail sought.


Author(s):  
John M. Murray ◽  
Rob Ward

The eukaryotic flagellum is constructed from 11 parallel tubular elements arranged as 9 peripheral fibers (doublet microtubules) and 2 central fibers (singlet microtubules). The primary motion generating component has been found to be arranged as axially periodic “arms” bridging the adjacent doublets. The dynein, comprising the arms, has been isolated and characterized from several different cilia and flagella. Various radial and azimuthal cross-links stabilize the axially aligned microtubules, and probably play some role in controlling the form of the flagella beat cycle.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


Author(s):  
P.M. Frederik ◽  
K.N.J. Burger ◽  
M.C.A. Stuart ◽  
A.J. Verkleij

Cellular membranes are often composed of phospholipid mixtures in which one or more components have a tendency to adopt a type II non-bilayer lipid structure such as the inverted hexagonal (H||) phase. The formation of a type II non-bilayer intermediate, the inverted lipid micel is proposed as the initial step in membrane fusion (Verkleij 1984, Siegel, 1986). In the various forms of cellular transport mediated by carrier vesicles (e.g. exocytosis, endocytosis) the regulation of membrane fusion, and hence of inverted lipid micel formation, is of vital importance.We studied the phase behaviour of simple and complex lipid mixtures by cryo-electron microscopy to gain more insight in the ultrastructure of different lipid phases (e.g. Pβ’, Lα, H||) and in the complex membrane structures arising after Lα < - > H|| phase changes (e.g. isotropic, cubic). To prepare hydrated thin films a 700 mesh hexagonal grid (without supporting film) was dipped into and withdrawn from a liposome suspension. The excess fluid was blotted against filter paper and the thin films that form between the bars of the specimen grid were immediately (within 1 second) vitrified by plunging of the carrier grids into ethane cooled to its melting point by liquid nitrogen (Dubochet et al., 1982). Surface active molecules such as phospholipids play an important role in the formation and thinning of these aqueous thin films (Frederik et al., 1989). The formation of two interfacial layers at the air-water interfaces requires transport of surface molecules from the suspension as well as the orientation of these molecules at the interfaces. During the spontaneous thinning of the film the interfaces approach each other, initially driven by capillary forces later by Van der Waals attraction. The process of thinning results in the sorting by size of the suspended material and is also accompanied by a loss of water from the thinner parts of the film. This loss of water may result in the concentration and eventually in partial dehydration of suspended material even if thin films are vitrified within 1 sec after their formation. Film formation and vitrification were initiated at temperatures between 20-60°C by placing die equipment in an incubator provided widi port holes for the necessary manipulations. Unilamellar vesicles were made from dipalmitoyl phosphatidyl choline (DPPC) by an extrusion method and showed a smooth (Lα) or a rippled (PB’.) structure depending on the temperature of the suspensions and the temperature of film formation (50°C resp. 39°C) prior to vitrification. The thermotropic phases of hydrated phospholipids are thus faithfully preserved in vitrified thin films (fig. a,b). Complex structures arose when mixtures of dioleoylphosphatidylethanol-amine (DOPE), dioleoylphosphatidylcholine (DOPC) and cholesterol (molar ratio 3/1/2) are heated and used for thin film formation. The tendency of DOPE to adopt the H|| phase is responsible for the formation of complex structures in this lipid mixture. Isotropic and cubic areas (fig. c,d) having a bilayer structure are found in coexistence with H|| cylinders (fig. e). The formation of interlamellar attachments (ILA’s) as observed in isotropic and cubic structures is also thought to be of importance in biological fusion events. Therefore the study of the fusion activity of influenza B virus with liposomes (DOPE/DOPC/cholesterol/ganglioside in a molar ratio 1/1/2/0.2) was initiated. At neutral pH only adsorption of virus to liposomes was observed whereas 2 minutes after a drop in pH (7.4 - > 5.4) fusion between virus and liposome membranes was demonstrated (fig. f). The micrographs illustrate the exciting potential of cryo-electron microscopy to study lipid-lipid and lipid-protein interactions in hydrated specimens.


2020 ◽  
Author(s):  
James Frederich ◽  
Ananya Sengupta ◽  
Josue Liriano ◽  
Ewa A. Bienkiewicz ◽  
Brian G. Miller

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein–protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. In recent years, FC has emerged as an important chemical probe of human 14-3-3 PPIs implicated in cancer and neurological diseases. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of different 14-3-3 isoforms on FC activity has not been systematically explored. This is a relevant question for the continued development of FC variants because there are seven distinct isoforms of 14-3-3 in humans. Despite their remarkable sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions <i>in vivo</i>. Herein, we report the isoform-specificity profile of FC <i>in vitro</i>using recombinant human 14-3-3 isoforms and a focused library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal 14-3-3 recognition domains of client phosphoproteins targeted by FC in cell culture. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3s. Together, these data provide strong motivation for the development of non-natural FC variants with enhanced selectivity for individual 14-3-3 isoforms.


Sign in / Sign up

Export Citation Format

Share Document