scholarly journals Subtype-specific collaborative transcription factor networks are promoted by OCT4 in the progression of prostate cancer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ken-ichi Takayama ◽  
Takeo Kosaka ◽  
Takashi Suzuki ◽  
Hiroshi Hongo ◽  
Mototsugu Oya ◽  
...  

AbstractInteractive networks of transcription factors (TFs) have critical roles in epigenetic and gene regulation for cancer progression. It is required to clarify underlying mechanisms for transcriptional activation through concerted efforts of TFs. Here, we show the essential role of disease phase-specific TF collaboration changes in advanced prostate cancer (PC). Investigation of the transcriptome in castration-resistant PC (CRPC) revealed OCT4 as a key TF in the disease pathology. OCT4 confers epigenetic changes by promoting complex formation with FOXA1 and androgen receptor (AR), the central signals for the progression to CRPC. Meanwhile, OCT4 facilitates a distinctive complex formation with nuclear respiratory factor 1 (NRF1) to gain chemo-resistance in the absence of AR. Mechanistically, we reveal that OCT4 increases large droplet formations with AR/FOXA1 as well as NRF1 in vitro. Disruption of TF collaborations using a nucleoside analogue, ribavirin, inhibited treatment-resistant PC tumor growth. Thus, our findings highlight the formation of TF collaborations as a potent therapeutic target in advanced cancer.

2001 ◽  
Vol 21 (11) ◽  
pp. 3738-3749 ◽  
Author(s):  
Ulf Andersson ◽  
Richard C. Scarpulla

ABSTRACT The thermogenic peroxisome proliferator-activated receptor γ (PPAR-γ) coactivator 1 (PGC-1) has previously been shown to activate mitochondrial biogenesis in part through a direct interaction with nuclear respiratory factor 1 (NRF-1). In order to identify related coactivators that act through NRF-1, we searched the databases for sequences with similarities to PGC-1. Here, we describe the first characterization of a 177-kDa transcriptional coactivator, designated PGC-1-related coactivator (PRC). PRC is ubiquitously expressed in murine and human tissues and cell lines; but unlike PGC-1, PRC was not dramatically up-regulated during thermogenesis in brown fat. However, its expression was down-regulated in quiescent BALB/3T3 cells and was rapidly induced by reintroduction of serum, conditions where PGC-1 was not detected. PRC activated NRF-1-dependent promoters in a manner similar to that observed for PGC-1. Moreover, NRF-1 was immunoprecipitated from cell extracts by antibodies directed against PRC, and both proteins were colocalized to the nucleoplasm by confocal laser scanning microscopy. PRC interacts in vitro with the NRF-1 DNA binding domain through two distinct recognition motifs that are separated by an unstructured proline-rich region. PRC also contains a potent transcriptional activation domain in its amino terminus adjacent to an LXXLL motif. The spatial arrangement of these functional domains coincides with those found in PGC-1, supporting the conclusion that PRC and PGC-1 are structurally and functionally related. We conclude that PRC is a functional relative of PGC-1 that operates through NRF-1 and possibly other activators in response to proliferative signals.


2021 ◽  
Author(s):  
Tomasz Wenta ◽  
Anette Schmidt ◽  
Qin Zhang ◽  
Raman Devarajan ◽  
Prateek Singh ◽  
...  

Loss of α6β4-dependent hemidesmosomes has been observed during prostate cancer progression. However, the significance and underlying mechanisms by which aberrant hemidesmosome assembly may modulate tumorigenesis remain elusive. Using an extensive CRISPR/Cas9-mediated genetic engineering approaches in different prostate cancer cell lines combined with in vivo tumorigenesis studies in mice, bone marrow-on-chip assays and bioinformatics, as well as histological analysis of prostate cancer patient cohorts, we demonstrated that simultaneous loss of PTEN and hemidesmosomes induced several tumorigenic properties including proliferation, migration, resistance to anoikis, apoptosis, and drug treatment in vitro, and increased metastatic capacity in vivo. Our studies showed that these effects were driven by activation of EGFR/PI3K/Akt and FAK/Src-pathways and were abolished by plectin downregulation. Therefore, dual loss of PTEN and hemidesmosomes may have diagnostic value helping to stratify prostate cancer patients with high risk for development of aggressive disease and highlight plectin as a potential therapeutic target in prostate cancer.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Oncogene ◽  
2021 ◽  
Author(s):  
Hsiu-Chi Lee ◽  
Chien-Hui Ou ◽  
Yun-Chen Huang ◽  
Pei-Chi Hou ◽  
Chad J. Creighton ◽  
...  

AbstractMetastatic castration-resistant prostate cancer (mCRPC) is a malignant and lethal disease caused by relapse after androgen-deprivation (ADT) therapy. Since enzalutamide is innovated and approved by US FDA as a new treatment option for mCRPC patients, drug resistance for enzalutamide is a critical issue during clinical usage. Although several underlying mechanisms causing enzalutamide resistance were previously identified, most of them revealed that drug resistant cells are still highly addicted to androgen and AR functions. Due to the numerous physical functions of AR in men, innovated AR-independent therapy might alleviate enzalutamide resistance and prevent production of adverse side effects. Here, we have identified that yes-associated protein 1 (YAP1) is overexpressed in enzalutamide-resistant (EnzaR) cells. Furthermore, enzalutamide-induced YAP1 expression is mediated through the function of chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII) at the transcriptional and the post-transcriptional levels. Functional analyses reveal that YAP1 positively regulates numerous genes related to cancer stemness and lipid metabolism and interacts with COUP-TFII to form a transcriptional complex. More importantly, YAP1 inhibitor attenuates the growth and cancer stemness of EnzaR cells in vitro and in vivo. Finally, YAP1, COUP-TFII, and miR-21 are detected in the extracellular vesicles (EVs) isolated from EnzaR cells and sera of patients. In addition, treatment with EnzaR-EVs induces the abilities of cancer stemness, lipid metabolism and enzalutamide resistance in its parental cells. Taken together, these results suggest that YAP1 might be a crucial factor involved in the development of enzalutamide resistance and can be an alternative therapeutic target in prostate cancer.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3959
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chen-Hsun Ho ◽  
Su-Wei Hu ◽  
Chia-Da Lin ◽  
...  

Background: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. Objective: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. Methods: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. Results: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1–TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. Conclusion: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1–TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Feng Guo ◽  
Yingke Zhou ◽  
Hui Guo ◽  
Dianyun Ren ◽  
Xin Jin ◽  
...  

AbstractNR5A2 is a transcription factor regulating the expression of various oncogenes. However, the role of NR5A2 and the specific regulatory mechanism of NR5A2 in pancreatic ductal adenocarcinoma (PDAC) are not thoroughly studied. In our study, Western blotting, real-time PCR, and immunohistochemistry were conducted to assess the expression levels of different molecules. Wound-healing, MTS, colony formation, and transwell assays were employed to evaluate the malignant potential of pancreatic cancer cells. We demonstrated that NR5A2 acted as a negative prognostic biomarker in PDAC. NR5A2 silencing inhibited the proliferation and migration abilities of pancreatic cancer cells in vitro and in vivo. While NR5A2 overexpression markedly promoted both events in vitro. We further identified that NR5A2 was transcriptionally upregulated by BRD4 in pancreatic cancer cells and this was confirmed by Chromatin immunoprecipitation (ChIP) and ChIP-qPCR. Besides, transcriptome RNA sequencing (RNA-Seq) was performed to explore the cancer-promoting effects of NR5A2, we found that GDF15 is a component of multiple down-regulated tumor-promoting gene sets after NR5A2 was silenced. Next, we showed that NR5A2 enhanced the malignancy of pancreatic cancer cells by inducing the transcription of GDF15. Collectively, our findings suggest that NR5A2 expression is induced by BRD4. In turn, NR5A2 activates the transcription of GDF15, promoting pancreatic cancer progression. Therefore, NR5A2 and GDF15 could be promising therapeutic targets in pancreatic cancer.


2021 ◽  
Vol 7 (27) ◽  
pp. eabg2564
Author(s):  
Nathalie Bock ◽  
Thomas Kryza ◽  
Ali Shokoohmand ◽  
Joan Röhl ◽  
Akhilandeshwari Ravichandran ◽  
...  

While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.


Author(s):  
Michelle Naidoo ◽  
Fayola Levine ◽  
Tamara Gillot ◽  
Akintunde T. Orunmuyi ◽  
E. Oluwabunmi Olapade-Olaopa ◽  
...  

High mortality rates of prostate cancer (PCa) are associated with metastatic castration-resistant prostate cancer (CRPC) due to the maintenance of androgen receptor (AR) signaling despite androgen deprivation therapies (ADTs). The 8q24 chromosomal locus is a region of very high PCa susceptibility that carries genetic variants associated with high risk of PCa incidence. This region also carries frequent amplifications of the PVT1 gene, a non-protein coding gene that encodes a cluster of microRNAs including, microRNA-1205 (miR-1205), which are largely understudied. Herein, we demonstrate that miR-1205 is underexpressed in PCa cells and tissues and suppresses CRPC tumors in vivo. To characterize the molecular pathway, we identified and validated fry-like (FRYL) as a direct molecular target of miR-1205 and observed its overexpression in PCa cells and tissues. FRYL is predicted to regulate dendritic branching, which led to the investigation of FRYL in neuroendocrine PCa (NEPC). Resistance toward ADT leads to the progression of treatment related NEPC often characterized by PCa neuroendocrine differentiation (NED), however, this mechanism is poorly understood. Underexpression of miR-1205 is observed when NED is induced in vitro and inhibition of miR-1205 leads to increased expression of NED markers. However, while FRYL is overexpressed during NED, FRYL knockdown did not reduce NED, therefore revealing that miR-1205 induces NED independently of FRYL.


Sign in / Sign up

Export Citation Format

Share Document