scholarly journals Disassembly of hemidesmosomes promotes tumorigenesis in PTEN-negative prostate cancer by targeting plectin into focal adhesions

2021 ◽  
Author(s):  
Tomasz Wenta ◽  
Anette Schmidt ◽  
Qin Zhang ◽  
Raman Devarajan ◽  
Prateek Singh ◽  
...  

Loss of α6β4-dependent hemidesmosomes has been observed during prostate cancer progression. However, the significance and underlying mechanisms by which aberrant hemidesmosome assembly may modulate tumorigenesis remain elusive. Using an extensive CRISPR/Cas9-mediated genetic engineering approaches in different prostate cancer cell lines combined with in vivo tumorigenesis studies in mice, bone marrow-on-chip assays and bioinformatics, as well as histological analysis of prostate cancer patient cohorts, we demonstrated that simultaneous loss of PTEN and hemidesmosomes induced several tumorigenic properties including proliferation, migration, resistance to anoikis, apoptosis, and drug treatment in vitro, and increased metastatic capacity in vivo. Our studies showed that these effects were driven by activation of EGFR/PI3K/Akt and FAK/Src-pathways and were abolished by plectin downregulation. Therefore, dual loss of PTEN and hemidesmosomes may have diagnostic value helping to stratify prostate cancer patients with high risk for development of aggressive disease and highlight plectin as a potential therapeutic target in prostate cancer.

2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Oncogene ◽  
2021 ◽  
Author(s):  
Hsiu-Chi Lee ◽  
Chien-Hui Ou ◽  
Yun-Chen Huang ◽  
Pei-Chi Hou ◽  
Chad J. Creighton ◽  
...  

AbstractMetastatic castration-resistant prostate cancer (mCRPC) is a malignant and lethal disease caused by relapse after androgen-deprivation (ADT) therapy. Since enzalutamide is innovated and approved by US FDA as a new treatment option for mCRPC patients, drug resistance for enzalutamide is a critical issue during clinical usage. Although several underlying mechanisms causing enzalutamide resistance were previously identified, most of them revealed that drug resistant cells are still highly addicted to androgen and AR functions. Due to the numerous physical functions of AR in men, innovated AR-independent therapy might alleviate enzalutamide resistance and prevent production of adverse side effects. Here, we have identified that yes-associated protein 1 (YAP1) is overexpressed in enzalutamide-resistant (EnzaR) cells. Furthermore, enzalutamide-induced YAP1 expression is mediated through the function of chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII) at the transcriptional and the post-transcriptional levels. Functional analyses reveal that YAP1 positively regulates numerous genes related to cancer stemness and lipid metabolism and interacts with COUP-TFII to form a transcriptional complex. More importantly, YAP1 inhibitor attenuates the growth and cancer stemness of EnzaR cells in vitro and in vivo. Finally, YAP1, COUP-TFII, and miR-21 are detected in the extracellular vesicles (EVs) isolated from EnzaR cells and sera of patients. In addition, treatment with EnzaR-EVs induces the abilities of cancer stemness, lipid metabolism and enzalutamide resistance in its parental cells. Taken together, these results suggest that YAP1 might be a crucial factor involved in the development of enzalutamide resistance and can be an alternative therapeutic target in prostate cancer.


2020 ◽  
Vol 34 ◽  
pp. 205873842095459
Author(s):  
Jijun Wang ◽  
Fan Wu ◽  
Yaoyao Li ◽  
Lei Pang ◽  
Xiaohong Wang ◽  
...  

Introduction: This work was to explore the connection of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and microRNA-4319 (miR-4319), and to investigate the associated underlying mechanisms in gastric cancer (GC) progression. Methods: Quantitative real-time PCR was performed to measure KCNQ1OT1, miR-4319 and DNA-damage regulated autophagy modulator 2 (DRAM2) expression levels in GC cells. Moreover, expression level of KCNQ1OT1 and DRAM2 in GC tissues was analyzed at ENCORI website ( http://starbase.sysu.edu.cn/index.php ). Cell proliferation, colony formation assay and flow cytometry assays were performed to analyze effects of KCNQ1OT1, miR-4319 and DRAM2 on cell growth and death. Dual-luciferase activity reporter assay and RNA immunoprecipitation assay was conducted to verify the interactions of KCNQ1OT1 or DRAM2 and miR-4319. Results and Conclusion: We found KCNQ1OT1 level was increased in tumor tissues and cells. Force the expression of KCNQ1OT1 promotes, while knockdown KCNQ1OT1 inhibits GC cell growth. Further studies indicated miR-4319 functioned as a bridge between KCNQ1OT1 and DRAM2. Finally, we showed KCNQ1OT1/miR-4319/DRAM2 axis regulates GC cell growth in vitro and in vivo. lncRNA KCNQ1OT1 promotes GC progression by sponging miR-4319 to upregulate DRAM2, indicating KCNQ1OT1 might be a promising target for GC treatment.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 4514-4514 ◽  
Author(s):  
Kim N. Chi ◽  
Sebastien J. Hotte ◽  
Susan Ellard ◽  
Joel Roger Gingerich ◽  
Anthony Michael Joshua ◽  
...  

4514 Background: Heat Shock Protein 27 (Hsp27) is a multi-functional chaperone protein that regulates cell signaling and survival pathways implicated in cancer progression. In prostate cancer models, Hsp27 complexes with androgen receptor (AR) and enhances transactivation of AR-regulated genes. OGX-427 is a 2nd generation antisense oligonucleotide that inhibits Hsp27 expression with in vitro and in vivo efficacy and was well tolerated with single agent activity in phase I studies. Methods: Chemotherapy-naïve pts with no/minimal symptoms were randomized to receive OGX-427 600 mg IV x 3 loading doses then 1000 mg IV weekly with P 5 mg PO BID or P only. Primary endpoint was the proportion of pts progression free (PPF) at 12 weeks (PCWG2 criteria). A 2-stage MinMax design (H0 = 5%, HA >20%, α=0.1, β=0.1) with 32 pts/arm provides 70% power to detect the difference at 0.10 1-sided significance. Secondary endpoints include PSA decline, measurable disease response, and circulating tumour cell (CTC) enumeration. Results: 38 pts have been enrolled; 1st stage of accrual completed with 2nd stage accruing. In the 1st 32 pts randomized (17 to OGX-427+P, 15 to P), baseline median age was 71 years (53-89), ECOG PS 0 or 1 in 66% and 34% of pts, median PSA 66 (6-606), metastases in bone/lymph nodes/liver or lung was 75/56/9%, 31% had prior P treatment, and 93% had ≥5 CTC/7.5 ml. Predominantly grade 1/2 infusion reactions (chills, diarrhea, flushing, nausea, vomiting) occurred in 47% of pts receiving OGX-427+P. One pt on OGX-427+P developed hemolytic uremic syndrome. A PSA decline of ≥50% occurred in 41% of pts on OGX-427+P, and 20% of pts treated with P. A measurable disease partial response was seen in 3/8 (38%) evaluable pts on OGX-427+P and 0/9 pts on P. CTC conversion from ≥5 to <5/7.5 ml occurred in 50% of pts on OGX-427+P and 31% treated with P. Thus far, in 26 evaluable pts the PPF at 12 weeks was 71% (95% CI: 42-92) in OGX-427+P treated pts and 33% (95% CI: 10-65) in pts on P. Conclusions: These data provide clinical evidence for the role of Hsp27 as a therapeutic target in prostate cancer and support continued evaluation of OGX-427 for pts with CRPC. Funded by a grant from the Terry Fox Research Institute.


2020 ◽  
Author(s):  
Yunki Lee ◽  
Jeongmoon J. Choi ◽  
Song Ih Ahn ◽  
Nan Hee Leea ◽  
Woojin M. Han ◽  
...  

AbstractExposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.


2019 ◽  
Author(s):  
Maxine GB Tran ◽  
Becky AS Bibby ◽  
Lingjian Yang ◽  
Franklin Lo ◽  
Anne Warren ◽  
...  

AbstractAndrogen signaling drives prostate cancer progression and is a therapeutic target. Hypoxia/HIF1a signaling is associated with resistance to hormone therapy and a poor prognosis in patients treated with surgery or radiotherapy. It is not known whether the pathways operate in cooperation or independently. Using LNCaP cells with and without stable transfection of a HIF1a expression vector, we show that combined AR and HIF1a signaling promotes tumor growth in vitro and in vivo, and the capacity of HIF1a to promote tumor growth in the absence of endogenous androgen in vivo. Gene expression analysis identified 7 genes that were upregulated by both androgen and HIF1a. ChIP-Seq analysis showed that the AR and HIF/hypoxia signaling pathways function independently regulating the transcription of different genes with few shared targets. In clinical datasets elevated expression of 5 of the 7 genes was associated with a poor prognosis. Our findings suggest that simultaneous therapeutic inhibition of AR and HIF1a signaling pathways should be explored as a potential therapeutic strategy.


Author(s):  
Feng Yu ◽  
Yuanyuan Lin ◽  
Xinping Xu ◽  
Weipeng Liu ◽  
Dan Tang ◽  
...  

2020 ◽  
Author(s):  
Lining Huang ◽  
Xingming Jiang ◽  
Zhenglong Li ◽  
Jinglin Li ◽  
Xuan Lin ◽  
...  

Abstract Background: Cholangiocarcinoma (CCA) is a mortal cancer with high mortality, whereas the function and mechanism of occurrence and progression of CCA are still mysterious. Long non-coding RNAs (lncRNAs) could function as important regulators in carcinogenesis and cancer progression. Growing evidences have indicated that the novel lncRNA linc00473 plays an important role in cancer progression and metastasis. However, its function and molecular mechanism in CCA remain unknown. Methods: The linc00473 expression in CCA tissues and cell lines was analyzed using qRT-PCR. Gain- and loss-of-function experiments were conducted to investigate the biological functions of linc00473 both in vitro and in vivo. Insights into the underlying mechanisms of competitive endogenous RNAs (ceRNAs) were determined by bioinformatics analysis, dual-luciferase reporter assays, qRT-PCR arrays, RNA immunoprecipitation (RIP) and rescue experiments. Results: Linc00473 was highly expressed in CCA tissues and cell lines. Linc00473 knockdown inhibited CCA growth and metastasis. Furthermore, linc00473 acted as miR-506 sponge and regulated its target gene DDX5 expression. Rescue assays verified that linc00473 modulated the tumorigenesis of CCA by regulating miR-506. Conclusions: The data indicated that linc00473 played an oncogenic role in CCA growth and metastasis, and could serve as a novel molecular target for treating CCA.


2020 ◽  
Author(s):  
Yiwu Yan ◽  
Bo Zhou ◽  
Chen Qian ◽  
Alex Vasquez ◽  
Avradip Chatterjee ◽  
...  

AbstractDespite advances in diagnosis and treatment, metastatic prostate cancer remains incurable and is associated with high mortality rates. Thus, novel actionable drug targets are urgently needed for therapeutic interventions in advanced prostate cancer. Here we report receptor-interacting protein kinase 2 (RIPK2) as an actionable drug target for suppressing prostate cancer metastasis. RIPK2 is frequently amplified in lethal prostate cancers and its overexpression is associated with disease progression and aggressiveness. Genetic and pharmacological inhibition of RIPK2 significantly suppressed prostate cancer progression in vitro and metastasis in vivo. Multi-level proteomic analysis revealed that RIPK2 strongly regulates c-Myc protein stability and activity, largely by activating the MKK7/JNK/c-Myc phosphorylation pathway—a novel, non-canonical RIPK2 signaling pathway. Targeting RIPK2 inhibits this phosphorylation pathway, and thus promotes the degradation of c-Myc—a potent oncoprotein for which no drugs have been approved for clinical use yet. These results support targeting RIPK2 for personalized therapy in prostate cancer patients towards improving survival.


2021 ◽  
Author(s):  
Hucheng Liu ◽  
Jun Xiao ◽  
Bo Li ◽  
Yajun Chen ◽  
Jin Zeng ◽  
...  

Abstract Background In a previous study, we have identified that circ-CTNNB1 (a circular RNA derived from CTNNB1) drives cancer progression through the activation of the Wnt/β-catenin signaling pathway in various tumors. However, the functions of circ-CTNNB1 in regulating osteosarcoma (OS, a highly malignant bone tumor in children and adolescents) remain unclear. In this study, we aimed to assess the role of circ-CTNNB1 in OS and identify the underlying mechanisms, which may contribute to the exploration of a potential therapeutic strategy for OS. Methods Circ-CTNNB1 was analyzed by qRT-PCR, and the results were confirmed by Sanger sequencing. The interaction and effects between circ-CTNNB1 and RNA binding motif protein 15 (RBM15) were analyzed through biotin-labeled RNA pull-down and mass spectrometry, in vitro binding, and RNA electrophoretic mobility shift assays. In vitro and in vivo experiments were performed to evaluate the biological functions and underlying mechanisms of circ-CTNNB1 and RBM15 in OS cells. Results Circ-CTNNB1 was highly expressed in OS tissues and predominantly detected in the nucleus of OS cells. Ectopic expression of circ-CTNNB1 promoted the growth, invasion, and metastasis of OS cells in vitro and in vivo. Mechanistically, circ-CTNNB1 interacted with RBM15 and subsequently promoted the expression of hexokinase 2 (HK2), glucose-6-phosphate isomerase (GPI), and phosphoglycerate kinase 1 (PGK1) through N6-methyladenosine (m6A) modification to facilitate the glycolysis process and activate OS progression. Conclusions These results indicate that oncogenic circ-CTNNB1 drives aerobic glycolysis and OS progression by facilitating RBM15-mediated m6A modification.


Sign in / Sign up

Export Citation Format

Share Document