scholarly journals Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinlong Yao ◽  
Peter A. Cawood ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Xiaoping Xia ◽  
...  

AbstractInitiation of Mariana-type oceanic subduction zones requires rheologically strong oceanic lithosphere, which developed through secular cooling of Earth’s mantle. Here, we report a 518 Ma Mariana-type subduction initiation ophiolite from northern Tibet, which, along with compilation of similar ophiolites through Earth history, argues for the establishment of the modern plate tectonic regime by the early Cambrian. The ophiolite was formed during the subduction initiation of the Proto-Tethys Ocean that coincided with slab roll-back along the southern and western Gondwana margins at ca. 530-520 Ma. This global tectonic re-organization and the establishment of modern plate tectonic regime was likely controlled by secular cooling of the Earth, and facilitated by enhanced lubrication of subduction zones by sediments derived from widespread surface erosion of the extensive mountain ranges formed during Gondwana assembly. This time also corresponds to extreme events recorded in climate and surface proxies that herald formation of the contemporary Earth.

Geology ◽  
2021 ◽  
Author(s):  
Dong Fu ◽  
Bo Huang ◽  
Tim E. Johnson ◽  
Simon A. Wilde ◽  
Fred Jourdan ◽  
...  

Subduction of oceanic lithosphere is a diagnostic characteristic of plate tectonics. However, the geodynamic processes from initiation to termination of subduction zones remain enigmatic mainly due to the scarcity of appropriate rock records. We report the first discovery of early Paleozoic boninitic blueschists and associated greenschists from the eastern Proto-Tethyan North Qilian orogenic belt, northeastern Tibet, which have geochemical affinities that are typical of forearc boninites and island arc basalts, respectively. The boninitic protoliths of the blueschists record intra-oceanic subduction initiation at ca. 492–488 Ma in the eastern North Qilian arc/forearc–backarc system, whereas peak blueschist facies metamorphism reflects subsequent subduction of the arc/forearc complex to high pressure at ca. 455 Ma. These relations therefore record the life circle of an intra-oceanic subduction zone within the northeastern Proto-Tethys Ocean. The geodynamic evolution provides an early Paleozoic analogue of the early development of the Izu–Bonin–Mariana arc and its later subduction beneath the extant Japanese arc margin. This finding highlights the important role of subduction of former upper plate island arc/forearcs in reducing the likelihood of preservation of initial subduction-related rock records in ancient orogenic belts.


2021 ◽  
Author(s):  
Andrea Piccolo ◽  
Boris Kaus ◽  
Richard White ◽  
Nicolas Arndt ◽  
Nicolas Riel

<p>In the plate tectonic convection regime, the external lid is subdivided into discrete plates that move independently. Although it is known that the system of plates is mainly dominated by slab-pull forces, it is not yet clear how, when and why plate tectonics became the dominant geodynamic process in our planet. It could have started during the Meso-Archean (3.0-2.9 Ga). However, it is difficult to conceive a subduction driven system at the high mantle potential temperatures (<strong>Tp</strong>) that are thought to have existed around that time, because <strong>Tp</strong> controls the thickness and the strength of the compositional lithosphere making subduction unlikely. In recent years, however, a credible solution to the problem of subduction initiation during the Archean has been advanced, invoking a plume-induced subduction mechanism[1] that seems able to generate plate-tectonic like behaviour to first order. However, it has not yet been demonstrated how these tectonic processes interact with each other, and whether they are able to eventually propagate to larger scale subduction zones.</p><p>The Archean Eon was characterized by a high <strong>Tp</strong>[2]<strong>, </strong>which generates weaker plates, and a thick and chemically buoyant lithosphere. In these conditions, slab pull forces are inefficient, and most likely unable to be transmitted within the plate. Therefore, plume-related proto-plate tectonic cells may not have been able to interact with each other or showed a different interaction as a function of mantle potential temperature and composition of the lithosphere. Moreover, due to secular change of <strong>Tp, </strong>the dynamics may change with time. In order to understand the complex interaction between these tectonic seeds it is necessary to undertake large scale 3D numerical simulations, incorporating the most relevant phase transitions and able to handle complex constitutive rheological model.</p><p>Here, we investigate the effects of the composition and <strong>Tp </strong>independently to understand the potential implications of the interaction of plume-induced subduction initiation. We employ a finite difference visco-elasto-plastic thermal petrological code using a large-scale domain (10000 x 10000 x 1000 km along x, y and z directions) and incorporating the most relevant petrological phase transitions. We prescribed two oceanic plateaus bounded by subduction zones and we let the negative buoyancy and plume-push forces evolve spontaneously. The paramount question that we aim to answer is whether these configurations allow the generation of stable plate boundaries. The models will also investigate whether the presence of continental terrain helps to generate plate-like features and whether the processes are strong enough to generate new continental terrains <span>or assemble them </span></p><p>.</p><p> </p><p>[1]       T. V. Gerya, R. J. Stern, M. Baes, S. V. Sobolev, and S. A. Whattam, “Plate tectonics on the Earth triggered by plume-induced subduction initiation,” Nature, vol. 527, no. 7577, pp. 221–225, 2015.</p><p>[2]       C. T. Herzberg, K. C. Condie, and J. Korenaga, “Thermal history of the Earth and its petrological expression,” Earth Planet. Sci. Lett., vol. 292, no. 1–2, pp. 79–88, 2010.</p><p>[3]       R. M. Palin, M. Santosh, W. Cao, S.-S. Li, D. Hernández-Uribe, and A. Parsons, “Secular metamorphic change and the onset of plate tectonics,” Earth-Science Rev., p. 103172, 2020.</p>


2021 ◽  
Author(s):  
Jinlong Yao ◽  
Peter Cawood ◽  
Guochun Zhao ◽  
Yigui Han ◽  
Xiao-Ping Xia ◽  
...  

Abstract Initiation of stable Mariana type one-sided oceanic subduction zones requires rheologically strong oceanic lithosphere, which developed through secular cooling of Earth mantle. This enabled the development of focused high stress zones resulting in narrow weak zones of convergence with resultant oceanic subduction leading to mantle hydration and arc magmatism. Based on detailed study and identification of the oldest (518 Ma) Mariana type oceanic subduction initiation ophiolite (Munabulake ophiolite) on Earth from northern Tibet, along with compilation of oceanic subduction initiation ophiolites through Earth history, we argue for the initiation of modern plate tectonic regime by at least the early Cambrian. The mantle and crust members of the Munabulake ophiolite preserve a complete ophiolite stratigraphy. Blocks of layered marble and siliceous rocks interlayered with meta-basalt indicate a marine environment. Zircons from an olivine gabbro sample yield a concordant age of 518 Ma, along with mantle derived low δ18O (2.69‰ – 5.7‰) and high εHf(t) (11.1–13.6) values. The zircons also have varied H2O contents ranging from 109–1339 ppm with peaks at 260 and 520 ppm, indicative of hydration of mantle derived magma. The highly depleted peridotites display U–shaped REE patterns and varied Zr/Hf ratios, whereas spinel and olivine compositions within the peridotites indicate that they are residues of various degrees of melt extraction and evolved from abyssal to fore-arc peridotites. The crustal members of the ophiolite are mostly tholeiitic, display flat REE patterns and lower HFSEs, comparable to transitional lavas associated with Mariana subduction initiation ophiolite. Some rocks from the crustal section of the ophiolite display NMORB-like compositions but are also characterized by depletion in HSFEs. Therefore, the Munabulake ophiolite displays a chemical duality and progressively evolved from MORB (mid-ocean ridge basalt) to SSZ (supra-subduction zone) compositions, consistent with observations from zircon Hf-O isotopes and H2O contents. Furthermore, the ophiolite was formed during subduction initiation of the Proto-Tethys Ocean at the northern Gondwana margin, and coincided with an inferred slab roll back event in the southern Gondwana margin at ca. 530 − 520 Ma, indicative of a time of global tectonic re-organization. The early Cambrian Munabulake ophiolite indicates comparable slab strength and conditions to those that characterize modern plate tectonics. Such a tectonic regime coincided with final Gondwana assembly, and was associated with ca. 530 − 520 Ma global tectonic re-organization.


2020 ◽  
Author(s):  
Hannah Davies ◽  
J.A. Mattias Green ◽  
Joao C. Duarte

<p>Recent research of coupled tidal and tectonic modelling has found that during periods in an ocean’s Wilson cycle, (i.e. during dispersal, and subsequent convergence of oceans due to plate tectonic movement), oceans occasionally become resonant for the semi-diurnal component of the tide (M<sub>2</sub>). This results in an approximately 20-Million-year long period of enhanced tidal dissipation in the resonant ocean (assuming continental plate drift rates of ~5 cm yr<sup>-1</sup>). This resonant “Super-tide” has been simulated in numerical tidal models for both past and future tectonic scenarios, and they show that the current tides are among the most energetic found.</p><p>Here we use an established tidal model to analyse the conditions required for open ocean tidal resonance. Our conceptual “Earths” consist of two or more simplified oceans, which are shaped to represent conceptual versions of oceans of the past, present, and future: triangular (Tethys ocean), circular (Pacific and Arctic oceans), rectangular (Southern and Indian oceans), and rhomboid shaped (North, and South Atlantic Ocean). Each scenario was conducted using ocean bathymetry ranging from a “bathtub” ocean (a uniformly deep flat abyssal plane from coast to coast), to a continental shelf with no abyssal bathymetry, to a “realistic” ocean with ocean shelves, ridges, and subduction zones. The global ocean land ratio and ocean volume was conserved to present-day in most conceptual scenarios however, to investigate the maximum tidal dissipation possible on Earth, some scenarios deviated from the ocean volume and global coverage. In every scenario, ocean width is progressively increased relative to the predominant ocean boundaries, simulating plate tectonic opening of each ocean.</p><p>The aim of the work was to assess the frequency of the occurrence of resonance in the open ocean, and the upper limit for tidal dissipation of the semi-diurnal tide on Earth. We found that super-tides are common in the results with their dissipative strength varying from weaker than present day to five times present day.</p><p>The occurrence of tidal resonances in modelled conceptual oceans further confirms the link between tectonics and tidal evolution. These super-tidal periods of markedly increased tidal dissipation alter the ocean’s energy budget, nutrient dispersal and the carrying capacity of coastal and oceanic ecosystems.</p>


2016 ◽  
Vol 155 (1) ◽  
pp. 45-58 ◽  
Author(s):  
JOÃO C. DUARTE ◽  
WOUTER P. SCHELLART ◽  
FILIPE M. ROSAS

AbstractSubduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the SW Iberia margin. We discuss a buoyancy argument based on the premise that old oceanic lithosphere is unstable for supporting large basins, implying that it must be removed in subduction zones. As a consequence, we propose a new conceptual model in which both the Pacific and the Atlantic oceans close simultaneously, leading to the termination of the present Earth's supercycle and to the formation of a new supercontinent, which we name Aurica. Our new conceptual model also provides insights into supercontinent formation and destruction (supercycles) proposed for past geological times (e.g. Pangaea, Rodinia, Columbia, Kenorland).


2018 ◽  
Vol 470 (1) ◽  
pp. 415-437 ◽  
Author(s):  
Robert Hall

AbstractIn the Wilson cycle, there is a change from an opening to a closing ocean when subduction begins. Subduction initiation is commonly identified as a major problem in plate tectonics and is said to be nowhere observable, yet there are many young subduction zones at the west Pacific margins and in eastern Indonesia. Few studies have considered these examples. Banda subduction developed by the eastwards propagation of the Java trench into an oceanic embayment by tearing along a former ocean–continent boundary. The earlier subducted slab provided the driving force to drag down unsubducted oceanic lithosphere. Although this process may be common, it does not account for young subduction zones near Sulawesi at different stages of development. Subduction began there at the edges of ocean basins, not at former spreading centres or transforms. It initiated at a point where there were major differences in elevation between the ocean floor and the adjacent hot, weak and thickened arc/continental crust. The age of the ocean crust appears to be unimportant. A close relationship with extension is marked by the dramatic elevation of land, the exhumation of deep crust and the spectacular subsidence of basins, raising questions about the time required to move from no subduction to active subduction, and how initiation can be identified in the geological record.


2020 ◽  
Author(s):  
Xinyi Zhong ◽  
Zhong-Hai Li

<p>Subduction initiation (SI) induced by the tectonic boundary force may play a significant role in the Wilson cycle. In the previous analog and numerical models, the constant convergent velocity is generally applied, which may lead to large boundary forces for SI. In this study, we begin with testing the simple case of SI at passive margin with constant convergent force. The results indicate that the boundary force required to trigger the SI at passive margin with a thin and young oceanic lithosphere is much lower than that with a thick and old one. It is consistent with the multiple Cenozoic subduction zones in the Southwest Pacific, which are young ocean basin within 40 Ma and compressed by the India-Australia plate. Furthermore, we extended our model to explore a more complex case, forced SI during the collision-induced subduction transference, which is critical for Tethyan evolution. Both collision and SI processes are integrated in the numerical models. The results indicate that the forced convergence, rather than pure free subduction, is required to trigger and sustain the SI in the neighboring passive margin after collision of terrane. In addition, a weak passive margin can significantly promote the occurrence of subduction initiation, by decreasing required boundary force within reasonable range of plate tectonics. However, the lengths of subducted oceanic slab and accreting terrane play secondary roles in the occurrence of SI after collision. Under the favorable conditions of collision-induced subduction transference, the time required for subduction initiation after collision is generally within 10 Myrs, which is consistent with the general geological records of Neo-Tethys. In contrast, both Atlantic passive margin and Indian passive margin are old and stable with absence of subduction initiation in the present, which remains an open question.</p>


2020 ◽  
Author(s):  
Marzieh Baes ◽  
Stephan Sobolev ◽  
Taras Gerya ◽  
Sascha Brune

<p>The formation of new subduction zones is a key component of global plate tectonics. Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any pre-existing weak zones. According to this scenario, upon arrival of a hot and buoyant mantle plume beneath the lithosphere, the lithosphere breaks apart and the hot mantle plume materials flow atop of the broken parts of the lithosphere. This leads to bending of the lithosphere and eventually initiation of subduction. Plume-lithosphere interaction can lead to subduction initiation provided that the plume causes a critical local weakening of the lithospheric material above it, which depends on the plume volume, its buoyancy, and the thickness of the lithosphere. Previous modeling studies showed that plume-lithosphere interaction can result in initiation of multi- or single-slab subduction zones around the newly formed plateau. However, they did not explore the parameters playing key roles in discriminating between the single- and multi-slab subduction scenarios. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume-lithosphere interaction. Using 3d thermo-mechanical models we show that the response of the lithosphere to arrival of a mantle plume beneath it depends on several parameters such as age of oceanic lithosphere, thickness of the crust, large-scale lithospheric extension rate, relative location of plume head and plateau edge and mantle temperature. The numerical experiments reveal that plume-lithosphere interaction in present day Earth can result in three different deformation regimes: (a) multi-slab subduction initiation, (b) single-slab subduction initiation and (c) plateau formation without subduction initiation. On early Earth (in Archean times) plume-lithosphere interaction could result in formation of either multi-slab subduction zones, very efficient in production of new crust, or episodic short-lived circular subduction. Extension eases subduction initiation caused by plume-lithosphere interaction. Plume-induced subduction initiation of old oceanic lithosphere with a plateau with thick crust is only possible if the lithosphere is subjected to extension.</p>


2021 ◽  
Author(s):  
Richard Palin ◽  
M. Santosh

<p>The theory of plate tectonics is widely accepted by scientists and provides a robust framework with which to describe and predict the behavior of Earth’s rigid outer shell – the lithosphere – in space and time. Expressions of plate tectonic interactions at the Earth’s surface also provide critical insight into the machinations of our planet’s inaccessible interior, and allow postulation about the geological characteristics of other rocky bodies in our solar system and beyond. Formalization of this paradigm occurred at a landmark Penrose conference in 1969, representing the culmination of centuries of study, and our understanding of the “what”, “where”, “why”, and “when” of plate tectonics on Earth has continued to improve since. Here, we summarize the major discoveries that have been made in these fields and present a modern-day holistic model for the geodynamic evolution of the Earth that best accommodates key lines of evidence for its changes over time. Plate tectonics probably began at a global scale during the Mesoarchean (c. 2.9–3.0 Ga), with firm evidence for subduction in older geological terranes accounted for by isolated plate tectonic ‘microcells’ that initiated at the heads of mantle plumes. Such early subduction likely operated at shallow angles and was short-lived, owing to the buoyancy and low rigidity of hotter oceanic lithosphere. A transitional period during the Neoarchean and Paleoproterozoic/Mesoproterozoic was characterized by continued secular cooling of the Earth’s mantle, which reduced the buoyancy of oceanic lithosphere and increased its strength, allowing the angle of subduction at convergent plate margins to gradually steepen. The appearance of rocks during the Neoproterozoic (c. 0.8–0.9 Ga) diagnostic of subduction do not mark the onset of plate tectonics, but simply record the beginning of modern-style cold, deep, and steep subduction that is an end-member state of an earlier, hotter, mobile lid regime</p>


Sign in / Sign up

Export Citation Format

Share Document