Forced subduction initiation at passive continental margins: Numerical modeling

Author(s):  
Xinyi Zhong ◽  
Zhong-Hai Li

<p>Subduction initiation (SI) induced by the tectonic boundary force may play a significant role in the Wilson cycle. In the previous analog and numerical models, the constant convergent velocity is generally applied, which may lead to large boundary forces for SI. In this study, we begin with testing the simple case of SI at passive margin with constant convergent force. The results indicate that the boundary force required to trigger the SI at passive margin with a thin and young oceanic lithosphere is much lower than that with a thick and old one. It is consistent with the multiple Cenozoic subduction zones in the Southwest Pacific, which are young ocean basin within 40 Ma and compressed by the India-Australia plate. Furthermore, we extended our model to explore a more complex case, forced SI during the collision-induced subduction transference, which is critical for Tethyan evolution. Both collision and SI processes are integrated in the numerical models. The results indicate that the forced convergence, rather than pure free subduction, is required to trigger and sustain the SI in the neighboring passive margin after collision of terrane. In addition, a weak passive margin can significantly promote the occurrence of subduction initiation, by decreasing required boundary force within reasonable range of plate tectonics. However, the lengths of subducted oceanic slab and accreting terrane play secondary roles in the occurrence of SI after collision. Under the favorable conditions of collision-induced subduction transference, the time required for subduction initiation after collision is generally within 10 Myrs, which is consistent with the general geological records of Neo-Tethys. In contrast, both Atlantic passive margin and Indian passive margin are old and stable with absence of subduction initiation in the present, which remains an open question.</p>

2018 ◽  
Vol 470 (1) ◽  
pp. 415-437 ◽  
Author(s):  
Robert Hall

AbstractIn the Wilson cycle, there is a change from an opening to a closing ocean when subduction begins. Subduction initiation is commonly identified as a major problem in plate tectonics and is said to be nowhere observable, yet there are many young subduction zones at the west Pacific margins and in eastern Indonesia. Few studies have considered these examples. Banda subduction developed by the eastwards propagation of the Java trench into an oceanic embayment by tearing along a former ocean–continent boundary. The earlier subducted slab provided the driving force to drag down unsubducted oceanic lithosphere. Although this process may be common, it does not account for young subduction zones near Sulawesi at different stages of development. Subduction began there at the edges of ocean basins, not at former spreading centres or transforms. It initiated at a point where there were major differences in elevation between the ocean floor and the adjacent hot, weak and thickened arc/continental crust. The age of the ocean crust appears to be unimportant. A close relationship with extension is marked by the dramatic elevation of land, the exhumation of deep crust and the spectacular subsidence of basins, raising questions about the time required to move from no subduction to active subduction, and how initiation can be identified in the geological record.


2020 ◽  
Vol 6 (10) ◽  
pp. eaaz1048 ◽  
Author(s):  
Xin Zhou ◽  
Zhong-Hai Li ◽  
Taras V. Gerya ◽  
Robert J. Stern

Understanding the conditions for forming new subduction zones at passive continental margins is important for understanding plate tectonics and the Wilson cycle. Previous models of subduction initiation (SI) at passive margins generally ignore effects due to the lateral transition from oceanic to continental lithosphere. Here, we use three-dimensional numerical models to study the possibility of propagating convergent plate margins from preexisting intraoceanic subduction zones along passive margins [subduction propagation (SP)]. Three possible regimes are achieved: (i) subducting slab tearing along a STEP fault, (ii) lateral propagation–induced SI at passive margin, and (iii) aborted SI with slab break-off. Passive margin SP requires a significant preexisting lithospheric weakness and a strong slab pull from neighboring subduction zones. The Atlantic passive margin to the north of Lesser Antilles could experience SP if it has a notable lithospheric weakness. In contrast, the Scotia subduction zone in the Southern Atlantic will most likely not propagate laterally.


Geology ◽  
2021 ◽  
Author(s):  
Dong Fu ◽  
Bo Huang ◽  
Tim E. Johnson ◽  
Simon A. Wilde ◽  
Fred Jourdan ◽  
...  

Subduction of oceanic lithosphere is a diagnostic characteristic of plate tectonics. However, the geodynamic processes from initiation to termination of subduction zones remain enigmatic mainly due to the scarcity of appropriate rock records. We report the first discovery of early Paleozoic boninitic blueschists and associated greenschists from the eastern Proto-Tethyan North Qilian orogenic belt, northeastern Tibet, which have geochemical affinities that are typical of forearc boninites and island arc basalts, respectively. The boninitic protoliths of the blueschists record intra-oceanic subduction initiation at ca. 492–488 Ma in the eastern North Qilian arc/forearc–backarc system, whereas peak blueschist facies metamorphism reflects subsequent subduction of the arc/forearc complex to high pressure at ca. 455 Ma. These relations therefore record the life circle of an intra-oceanic subduction zone within the northeastern Proto-Tethys Ocean. The geodynamic evolution provides an early Paleozoic analogue of the early development of the Izu–Bonin–Mariana arc and its later subduction beneath the extant Japanese arc margin. This finding highlights the important role of subduction of former upper plate island arc/forearcs in reducing the likelihood of preservation of initial subduction-related rock records in ancient orogenic belts.


2016 ◽  
Vol 155 (1) ◽  
pp. 45-58 ◽  
Author(s):  
JOÃO C. DUARTE ◽  
WOUTER P. SCHELLART ◽  
FILIPE M. ROSAS

AbstractSubduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the SW Iberia margin. We discuss a buoyancy argument based on the premise that old oceanic lithosphere is unstable for supporting large basins, implying that it must be removed in subduction zones. As a consequence, we propose a new conceptual model in which both the Pacific and the Atlantic oceans close simultaneously, leading to the termination of the present Earth's supercycle and to the formation of a new supercontinent, which we name Aurica. Our new conceptual model also provides insights into supercontinent formation and destruction (supercycles) proposed for past geological times (e.g. Pangaea, Rodinia, Columbia, Kenorland).


2021 ◽  
Author(s):  
Joao Duarte ◽  
Nicolas Riel ◽  
Chiara Civiero ◽  
Sonia Silva ◽  
Filipe Rosas ◽  
...  

Abstract The Earth’s surface is constantly being recycled by plate tectonics. Subduction of oceanic lithosphere and delamination of continental lithosphere constitute the two most important mechanisms by which the Earth’s lithosphere is recycled into the mantle. Delamination or detachment in continental regions typically occurs below mountain belts due to a weight excess of overthickened lithospheric mantle, which detaches from overlying lighter crust, aided by the existence of weak layers within the continental lithosphere. Oceanic lithosphere is classically pictured as a rigid plate with a strong core that does not allow for delamination to occur. Here, we propose that active delamination of oceanic lithosphere occurs offshore Southwest Iberia. The process is assisted by the existence of a lithospheric serpentinized layer that allows the lower part of the lithosphere to decouple from the overlying crust. Tomography images reveal a sub-lithospheric high-velocity anomaly below this region, which we interpret as a delaminating block of old oceanic lithosphere. We present numerical models showing that for a geological setting mimicking offshore Southwest Iberia delamination of oceanic lithosphere is possible and may herald subduction initiation, which is a long-unsolved problem in the theory of plate tectonics. We further propose that such oceanic delamination is responsible for the highest-magnitude earthquakes in Europe, including the M8.5-8.7 Great Lisbon Earthquake of 1755 and the M7.9 San Vincente earthquake of 1969. In particular, our numerical models, in combination with calculations on seismic potential, provide a solution for the instrumentally recorded 1969 event below the flat Horseshoe abyssal plain, away from mapped tectonics faults. Delamination of old oceanic lithosphere near passive margins constitutes a new class of subduction initiation mechanisms, with fundamental implications for the dynamics of the Wilson cycle.


2020 ◽  
Author(s):  
Daniel R. Viete ◽  
Robert M. Holder

<p>Terrane accretion and tectonothermal activity associated with the Penokean and Yavapai Orogenies are recorded in various geologic elements of the Lake Superior region, USA, including: (1) mafic–ultramafic terranes comprising tholeiitic basalts and gabbros, boninites and calc-alkaline volcanics and intrusives (e.g., the Pembine–Wausau Terrane), and (2) multiple and distinct, short-length-scale (5–15 km) chlorite–biotite–garnet–staurolite–(kyanite–)sillimanite regional metamorphic isograd sequences. These geologic associations reflect development of a suprasubduction zone system (subduction initiation?) within a Paleoproterozoic ocean in the Orosirian Period, followed by episodes of short-duration (limited-length-scale) tectonometamorphism during accretionary orogenesis in the Statherian Period.</p><p>The geologic processes recorded in the Paleoproterozoic terranes of the Lake Superior region are very common in the Phanerozoic. We suggest that Paleoproterozoic tectonism in the Lake Superior region may reflect a West Pacific-type setting, involving distinct, short-lived tectonothermal events marking periods of subduction rollback and lithospheric extension, punctuated by episodes of arc/microcontinent collision, terrane accretion and lithospheric shortening.</p><p>The apparent operation of modern-like plate tectonics—accretionary tectonics involving rapid switching between lithospheric extension and shortening—in the Paleoproterozoic requires that a scenario of temporally-varying buoyancy forces at the subduction zone (spatially-varying density of the subducting slab?) be reconciled with the thicker (slower-densifying) oceanic lithosphere expected for a hotter Earth. Such a scenario may be explained by: (1) an anomalously cool mantle (producing anomalously thin oceanic crust) beneath the ocean basin whose closure led to the accretionary orogenesis recorded in the Lake Superior region, or (2) an incredibly long-lived (>> 100 Myr) ocean basin that allowed widespread development of critically-overdense lithosphere prior to subduction initiation and onset of accretionary orogenesis associated with the Penokean and Yavapai Orogenies.</p><p>We are currently investigating geologic associations in the Lake Superior region and their potential tectonic origins, using whole-rock geochemistry to test for the tectonic origins of the Pembine–Wausau Terrane, and <sup>40</sup>Ar/<sup>39</sup>Ar geochronology/geospeedometry to constrain time scales for the tectonometamorphism that produced the metamorphic isograd sequence in the region of Republic, Michigan. Results will provide new insights into accretionary tectonics during the Paleoproterozoic, and processes controlling the emergence and evolution of plate tectonics on Earth.</p>


2020 ◽  
Author(s):  
Marzieh Baes ◽  
Stephan Sobolev ◽  
Taras Gerya ◽  
Sascha Brune

<p>The formation of new subduction zones is a key component of global plate tectonics. Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any pre-existing weak zones. According to this scenario, upon arrival of a hot and buoyant mantle plume beneath the lithosphere, the lithosphere breaks apart and the hot mantle plume materials flow atop of the broken parts of the lithosphere. This leads to bending of the lithosphere and eventually initiation of subduction. Plume-lithosphere interaction can lead to subduction initiation provided that the plume causes a critical local weakening of the lithospheric material above it, which depends on the plume volume, its buoyancy, and the thickness of the lithosphere. Previous modeling studies showed that plume-lithosphere interaction can result in initiation of multi- or single-slab subduction zones around the newly formed plateau. However, they did not explore the parameters playing key roles in discriminating between the single- and multi-slab subduction scenarios. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume-lithosphere interaction. Using 3d thermo-mechanical models we show that the response of the lithosphere to arrival of a mantle plume beneath it depends on several parameters such as age of oceanic lithosphere, thickness of the crust, large-scale lithospheric extension rate, relative location of plume head and plateau edge and mantle temperature. The numerical experiments reveal that plume-lithosphere interaction in present day Earth can result in three different deformation regimes: (a) multi-slab subduction initiation, (b) single-slab subduction initiation and (c) plateau formation without subduction initiation. On early Earth (in Archean times) plume-lithosphere interaction could result in formation of either multi-slab subduction zones, very efficient in production of new crust, or episodic short-lived circular subduction. Extension eases subduction initiation caused by plume-lithosphere interaction. Plume-induced subduction initiation of old oceanic lithosphere with a plateau with thick crust is only possible if the lithosphere is subjected to extension.</p>


2020 ◽  
Author(s):  
Bernhard Steinberger ◽  
Douwe van Hinsbergen

<p>Identifying the geodynamic processes that trigger the formation of new subduction zones is key to understand what keeps the plate tectonic cycle going, and how plate tectonics once started. Here we discuss the possibility of plume-induced subduction initiation. Previously, our numerical modeling revealed that mantle upwelling and radial push induced by plume rise may trigger plate motion change, and plate divergence as much as 15-20 My prior to LIP eruption. Here we show that, depending on the geometry of plates, the distribution of cratonic keels and where the plume rises, it may also cause a plate rotation around a pole that is located close to the same plate boundary where the plume head impinges: If that occurs near one end of the plate boundary, an Euler pole of the rotation may form along that plate boundary, with extension on one side, and convergence on the other.  This concept is applied to the India-Africa plate boundary and the Morondova plume, which erupted around 90 Ma, but may have influenced plate motions as early as 105-110 Ma. If there is negligible friction, i.e. there is a pre-existing weak plate boundary, we estimate that the total amount of convergence generated in the northern part of the India-Africa plate boundary can exceed 100 km, which is widely thought to be sufficient to initiate forced, self-sustaining subduction. This may especially occur if the India continental craton acts like an “anchor” causing a comparatively southern location of the rotation pole of the India plate. Geology and paleomagnetism-based reconstructions of subduction initiation below ophiolites from Pakistan, through Oman, to the eastern Mediterranean reveal that E-W convergence around 105 Ma caused forced subduction initiation, and we tentatively postulate that this is triggered by Morondova plume head rise. Whether the timing of this convergence is appropriate to match observations on subduction initiation as early as 105 Ma depends on the timing of plume head arrival, which may predate eruption of the earliest volcanics. It also depends on whether a plume head already can exert substantial torque on the plate while it is still rising – for example, if the plate is coupled to the induced mantle flow by a thick craton.</p>


Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2327-2357
Author(s):  
Lorenzo G. Candioti ◽  
Stefan M. Schmalholz ◽  
Thibault Duretz

Abstract. Many plate tectonic processes, such as subduction initiation, are embedded in long-term (>100 Myr) geodynamic cycles often involving subsequent phases of extension, cooling without plate deformation and convergence. However, the impact of upper mantle convection on lithosphere dynamics during such long-term cycles is still poorly understood. We have designed two-dimensional upper-mantle-scale (down to a depth of 660 km) thermo-mechanical numerical models of coupled lithosphere–mantle deformation. We consider visco–elasto–plastic deformation including a combination of diffusion, dislocation and Peierls creep law mechanisms. Mantle densities are calculated from petrological phase diagrams (Perple_X) for a Hawaiian pyrolite. Our models exhibit realistic Rayleigh numbers between 106 and 107, and the model temperature, density and viscosity structures agree with geological and geophysical data and observations. We tested the impact of the viscosity structure in the asthenosphere on upper mantle convection and lithosphere dynamics. We also compare models in which mantle convection is explicitly modelled with models in which convection is parameterized by Nusselt number scaling of the mantle thermal conductivity. Further, we quantified the plate driving forces necessary for subduction initiation in 2D thermo-mechanical models of coupled lithosphere–mantle deformation. Our model generates a 120 Myr long geodynamic cycle of subsequent extension (30 Myr), cooling (70 Myr) and convergence (20 Myr) coupled to upper mantle convection in a single and continuous simulation. Fundamental features such as the formation of hyperextended margins, upper mantle convective flow and subduction initiation are captured by the simulations presented here. Compared to a strong asthenosphere, a weak asthenosphere leads to the following differences: smaller value of plate driving forces necessary for subduction initiation (15 TN m−1 instead of 22 TN m−1) and locally larger suction forces. The latter assists in establishing single-slab subduction rather than double-slab subduction. Subduction initiation is horizontally forced, occurs at the transition from the exhumed mantle to the hyperextended passive margin and is caused by thermal softening. Spontaneous subduction initiation due to negative buoyancy of the 400 km wide, cooled, exhumed mantle is not observed after 100 Myr in model history. Our models indicate that long-term lithosphere dynamics can be strongly impacted by sub-lithosphere dynamics. The first-order processes in the simulated geodynamic cycle are applicable to orogenies that resulted from the opening and closure of embryonic oceans bounded by magma-poor hyperextended rifted margins, which might have been the case for the Alpine orogeny.


2021 ◽  
Author(s):  
Marzieh Baes ◽  
Stephan Sobolev ◽  
Taras Gerya ◽  
Robert Stern ◽  
Sascha Brune

<p>Subduction zones are key components of plate tectonics and plate tectonics could not begin until the first subduction zone formed. Plume-induced subduction initiation, which has been proposed as triggering the beginning of plate tectonics (Gerya et al., 2015), is one of the few scenarios that can break the lithosphere and recycle a stagnant lid without requiring any pre-existing weak zones. So far, two natural examples of plume-induced subduction initiation have been recognized. The first was found in southern and western margins of the Caribbean Plate (Whattam and Stern 2014). Initiation of the Cascadia subduction zone in Eocene times has been proposed to be the second example of plume-induced subduction initiation (Stern and Dumitru, 2019).</p><p>The focus of previous studies was to inspect plume-lithosphere interaction either for the case of stationary lithosphere (e.g., Gerya et al., 2015) or for moving lithosphere without considering the effect of lithospheric magmatic weakening above the plume head (e.g., Moore et al., 1998). In present study we investigate the response of moving oceanic lithosphere to the arrival of a rising mantle plume head including the effect of magmatic lithospheric weakening. We used 3D numerical thermo-mechanical modeling. Using I3ELVIS code, which is based on finite difference staggered grid and marker-in-cell with an efficient OpenMP multigrid solver (Gerya, 2010), we show that plate motion may affect the plume-induced subduction initiation only if a moderate size plume head (with a radius of 140 km in our experiments) impinges on a young but subductable lithosphere (with the age of 20 Myr). Outcomes indicate that lithospheric strength and plume buoyancy are key parameters in penetration of the plume and subduction initiation and that plate speed has a minor effect. We propose that eastward motion of the Farallon plate in Late Cretaceous time could play a key role in forming new subduction zones along the western and southern margin of the Caribbean plate.</p><p> </p><p>References:</p><p>Gerya, T., 2010, Introduction to Numerical Geodynamic Modelling.. Cambridge University Press.</p><p>Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S.V. and Whattam, S.A., 2015. Plume-induced subduction initiation triggered Plate Tectonics on Earth. Nature, 527, 221–225.</p><p>Moore, W. B., Schubert, G. and Tackley, P., 1998, Three-dimensional simulations of plume-lithosphere interaction at the Hawaiian swell. Science, 279, 1008-1011.</p><p>Stern, R.J., and Dumitru, T.A., 2019, Eocene initiation of the Cascadia subduction zone: A second example of plume-induced subduction initiation? Geosphere, v. 15, 659-681.</p><p>Whattam, S.A. and Stern, R.J., 2014. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27, doi: 10.1016/j.gr.2014.07.011.</p>


Sign in / Sign up

Export Citation Format

Share Document