scholarly journals Quantitative modelling of amino acid transport and homeostasis in mammalian cells

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gregory Gauthier-Coles ◽  
Jade Vennitti ◽  
Zhiduo Zhang ◽  
William C. Comb ◽  
Shuran Xing ◽  
...  

AbstractHomeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell’s endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations.

Author(s):  
Gregory Gauthier-Coles ◽  
Jade Vennitti ◽  
Zhiduo Zhang ◽  
William C. Comb ◽  
Kiran Javed ◽  
...  

AbstractHomeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signalling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell’s endowment with amino acid transporters can be deconvoluted by a logical series of experiments. This was used to computationally simulate amino acid translocation across the plasma membrane. For two different cancer cell lines and human myotubes, transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system were replicated in silico and could be applied to systems where only transcriptomic data are available. The methodology developed in this study is widely applicable to other transport processes and explain amino acid homeostasis at the systems-level.


2021 ◽  
Vol 85 (3) ◽  
pp. 587-599
Author(s):  
Akane Sato ◽  
Takumi Kimura ◽  
Kana Hondo ◽  
Miyuki Kawano-Kawada ◽  
Takayuki Sekito

ABSTRACT In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


1995 ◽  
Vol 268 (6) ◽  
pp. C1321-C1331 ◽  
Author(s):  
A. J. Moe

Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.


2002 ◽  
Vol 364 (3) ◽  
pp. 767-775 ◽  
Author(s):  
Sabine WOLF ◽  
Annette JANZEN ◽  
Nicole VÉKONY ◽  
Ursula MARTINÉ ◽  
Dennis STRAND ◽  
...  

Member 4 of human solute carrier family 7 (SLC7A4) exhibits significant sequence homology with the SLC7 subfamily of human cationic amino acid transporters (hCATs) [Sperandeo, Borsani, Incerti, Zollo, Rossi, Zuffardi, Castaldo, Taglialatela, Andria and Sebastio (1998) Genomics 49, 230–236]. It is therefore often referred to as hCAT-4 even though no convincing transport activity has been shown for this protein. We expressed SLC7A4 in Xenopus laevis oocytes, but could not detect any transport activity for cationic, neutral or anionic amino acids or for the polyamine putrescine. In addition, human glioblastoma cells stably overexpressing a fusion protein between SLC7A4 and the enhanced green fluorescent protein (EGFP) did not exhibit an increased transport activity for l-arginine. The lack of transport activity was not due to a lack of SLC7A4 protein expression in the plasma membrane, as in both cell types SLC7A4-EGFP exhibited a similar subcellular localization and level of protein expression as functional hCAT-EGFP proteins. The expression of SLC7A4 can be induced in NT2 teratocarcinoma cells by treatment with retinoic acid. However, also for this endogenously expressed SLC7A4, we could not detect any transport activity for l-arginine. Our data demonstrate that the expression of SLC7A4 in the plasma membrane is not sufficient to induce an amino acid transport activity in X. laevis oocytes or human cells. Therefore, SLC7A4 is either not an amino acid transporter or it needs additional (protein) factor(s) to be functional.


1996 ◽  
Vol 199 (4) ◽  
pp. 923-931 ◽  
Author(s):  
P M Taylor ◽  
S Kaur ◽  
B Mackenzie ◽  
G J Peter

We have measured rates of uptake of arginine, glutamine, glutamate, serine, phenylalanine and glycine in Xenopus laevis oocytes cultured for periods of up to 24h in saline in the presence or absence of a mixture of 20 amino acids at concentrations approximating those in Xenopus plasma. Amino acid supplementation increased the total intracellular amino acid concentration from 8.2 to 18.4 nmol per oocyte. Specific Na(+)-dependent amino acid transporters (systems B0,+, Xag-) exhibit 'adaptive regulation' (up-regulation during amino acid deprivation and down-regulation during amino acid supplementation). Na(+)-independent transporters of glutamate, glutamine and glycine (including system asc) display an opposite modulation in activity, which may help to combat amino-acid-induced oxidative stress by increasing the supply of glutathione precursors. Single amino acids at physiological plasma concentrations (0.47 mmol l-1 L-alanine, 0.08 mmol l-1 L-glutamate) mimicked at least some effects of the amino acid mixture. The mechanisms of transport modulation do not appear to include trans-amino acid or membrane potential effects and, in the case of Na(+)-independent transport, are independent of protein or mRNA synthesis. Furthermore, activation of protein kinase C by phorbol 12-myristate 13-acetate did not significantly affect endogenous glutamine and glutamate transport. The Xenopus oocyte appears to possess endogenous signalling mechanisms for selectively modulating the activity of amino acid transport proteins expressed in its surface membranes, a factor for consideration when using oocytes as an expression system for structure-function studies of cloned amino acid transporters.


2001 ◽  
Vol 281 (6) ◽  
pp. C1757-C1768 ◽  
Author(s):  
Takeo Nakanishi ◽  
Ramesh Kekuda ◽  
You-Jun Fei ◽  
Takahiro Hatanaka ◽  
Mitsuru Sugawara ◽  
...  

We have cloned a new subtype of the amino acid transport system N2 (SN2 or second subtype of system N) from rat brain. Rat SN2 consists of 471 amino acids and belongs to the recently identified glutamine transporter gene family that consists of system N and system A. Rat SN2 exhibits 63% identity with rat SN1. It also shows considerable sequence identity (50–56%) with the members of the amino acid transporter A subfamily. In the rat, SN2 mRNA is most abundant in the liver but is detectable in the brain, lung, stomach, kidney, testis, and spleen. When expressed in Xenopus laevis oocytes and in mammalian cells, rat SN2 mediates Na+-dependent transport of several neutral amino acids, including glycine, asparagine, alanine, serine, glutamine, and histidine. The transport process is electrogenic, Li+tolerant, and pH sensitive. The transport mechanism involves the influx of Na+ and amino acids coupled to the efflux of H+, resulting in intracellular alkalization. Proline, α-(methylamino)isobutyric acid, and anionic and cationic amino acids are not recognized by rat SN2.


1961 ◽  
Vol 200 (4) ◽  
pp. 675-678 ◽  
Author(s):  
J. L. Kostyo ◽  
J. E. Schmidt

Hypophysectomized rat diaphragms, which were immersed briefly in dilute solutions of growth hormone and then washed thoroughly, subsequently transported α-aminoisobutyric acid-1-C14 at a greater rate than the controls. Growth hormones of bovine, porcine, simian and human origins were all effective. Increasing either the hormone concentration or the length of time that the diaphragms were immersed in growth hormone solutions increased the effect on amino acid transport. Prolonged washing of the diaphragms following exposure to growth hormone did not reduce the magnitude of the effect on amino acid transport. Moreover, reducing the temperature of the growth hormone solutions did not diminish the resultant effect on amino acid transport. From these results, it was concluded that the initial interaction between growth hormone and rat muscle in vitro occurs rapidly and the modification produced by this interaction is relatively stable.


Sign in / Sign up

Export Citation Format

Share Document