scholarly journals In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinming Fan ◽  
Xing Ou ◽  
Wengao Zhao ◽  
Yun Liu ◽  
Bao Zhang ◽  
...  

AbstractHigh nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g−1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.

2019 ◽  
Author(s):  
Gary Koenig

While there are many material characterization techniques that are employed for the quality control processes of lithium-ion battery active material powders, eventually the materials must be validated electrochemically in battery cells. This requires making the cells including slurry mixing, slurry coating and drying, electrode calendering and pairing, and final cell assembly. Fabricating cells requires significant equipment and material expense and, in some cases, significant time. Additionally, the cells must be electrochemically tested which depending on the protocol can take multiple days. A technique that provides insights into the electrochemical properties of battery materials without cell fabrication and electrochemical evaluation could improve battery active material powder quality control and potentially reduce the time and cost involved in material validation. Our lab has been working on a technique where dispersions of battery active materials are evaluated electrochemically during collisions with current collectors. The technique has been referred to as dispersed particle resistance (DPR), and in previous studies we have shown that DPR measurements provide an indicator of the rate capability of lithium-ion battery active materials. DPR has a significant advantage with regards to timescale for material evaluation because the method takes only a few minutes and has the option of high throughput analysis due to a flow-through configuration. We have also adapted the technique to characterization of the particles in aqueous dispersions, and in this presentation we will demonstrate that the technique is effective with aqueous dispersions of cathode materials, including water-sensitive layered metal oxides with high nickel content such as LiNi0.8Co0.1Mn0.1O2.


2015 ◽  
Vol 3 (20) ◽  
pp. 10942-10948 ◽  
Author(s):  
Wei Weng ◽  
Qingqing Wu ◽  
Qian Sun ◽  
Xin Fang ◽  
Guozhen Guan ◽  
...  

Failure mechanism is investigated for the first time in a Si-based fiber-shaped electrode. The interphase electrical contact resistance indicates the dominant failure mechanism, which is the loss of contact between the current collector/conductive network and the active material. The decreasing contact resistance denotes the loose interphase contact and a decreasing capacity.


NANO ◽  
2019 ◽  
Vol 14 (03) ◽  
pp. 1950037 ◽  
Author(s):  
Bingning Wang ◽  
Xuehua Liu ◽  
Binghui Xu ◽  
Yanhui Li ◽  
Dan Xiu ◽  
...  

Three-dimensional reduced graphene oxide (RGO) matrix decorated with nanoflowers of layered MoS2 (denoted as 3D MoS2/RGO) have been synthesized via a facile one-pot stepwise hydrothermal method. Graphene oxide (GO) is used as precursor of RGO and a 3D GO network is formed in the first-step of hydrothermal treatment. At the second stage of hydrothermal treatment, nanoflowers of layered MoS2 form and anchor on the surface of previously formed 3D RGO network. In this preparation, thiourea not only induces the formation of the 3D architecture at a relatively low temperature, but also works as sulfur precursor of MoS2. The synthesized composites have been investigated with XRD, SEM, TEM, Raman spectra, TGA, N2 sorption technique and electrochemical measurements. In comparison with normal MoS2/RGO composites, the 3D MoS2/RGO composite shows improved electrochemical performance as anode material for lithium-ion batteries. A high reversible capacity of 930[Formula: see text]mAh[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] after 130 cycles under a current density of 200[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] as well as good rate capability and superior cyclic stability have been observed. The superior electrochemical performance of the 3D MoS2/RGO composite as anode active material for lithium-ion battery is ascribed to its robust 3D structures, enhanced surface area and the synergistic effect between graphene matrix and the MoS2 nanoflowers subunit.


RSC Advances ◽  
2015 ◽  
Vol 5 (51) ◽  
pp. 41179-41185 ◽  
Author(s):  
Xiaolei Wang ◽  
Ge Li ◽  
Ricky Tjandra ◽  
Xingye Fan ◽  
Xingcheng Xiao ◽  
...  

Nanocomposites of Nb2O5 NCs in situ grown on CNTs are successfully developed with excellent rate capability, leading to the successful fabrication of asymmetric supercapacitors with high energy and power density and long-term cycling stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 34245-34253 ◽  
Author(s):  
Mingquan Xu ◽  
Qingwang Lian ◽  
Yuxin Wu ◽  
Cheng Ma ◽  
Pengfei Tan ◽  
...  

A novel Li2SiO3 layered@spinel heterostructured material with superior rate capability and stabilized operating voltage was achieved.


1984 ◽  
Vol 62 (6) ◽  
pp. 527-531 ◽  
Author(s):  
P. J. Mulhern ◽  
R. R. Haering

Electrochemical cells based on the intercalation of lithium into Mo6S8 were examined by derivative constant current chronopotentiometry, in situ X-ray diffraction, and long-term cycling. About three-quarters of the capacity of such cells oeeurs between 2.0 and 2.1 V with most of the remainder near 2.45 V. Li/Mo6S8 cells have a long cycle life, good discharge rate capability, and an energy density of at least 260 W∙h/kg (1 W∙h = 3.6 kJ) of active material. Such cells can be made by starting with cathodes made from ternary Chevrel phase compounds. AyMo6S8 (A = Cu, Fe, Ni), and electrochemically converting these materials to form LixMo6S8.


2015 ◽  
Vol 3 (4) ◽  
pp. 1619-1623 ◽  
Author(s):  
Heyuan Qiu ◽  
Lingxing Zeng ◽  
Tongbin Lan ◽  
Xiaokun Ding ◽  
Mingdeng Wei

The GeO2/RGO electrode is successfully fabricated via a facile dip-coating route cooperated with in situ hydrolysis of GeCl4 and used directly as a binder-free anode for LIBs. This material exhibited high reversible capacity, good cycling performance and excellent rate capability.


2010 ◽  
Vol 72 ◽  
pp. 299-304
Author(s):  
Alberto Varzi ◽  
Corina Täubert ◽  
Margret Wohlfahrt-Mehrens ◽  
Martin Kreis ◽  
Walter Schütz

The potential use of multi-walled carbon nanotubes (MWCNTs) produced by chemical vapour deposition (CVD) as a conductive agent for electrodes in Li-ion batteries has been investigated. LiNi0.33Co0.33Mn0.33O2 (NCM) has been chosen as active material for positive electrodes, and a nano-sized TiO2-rutile for the negative electrodes. The electrochemical performances of the electrodes were studied by galvanostatic techniques and especially the influence of the nanotubes on the rate capability and cycling stability has been evaluated. The addition of MWCNTs significantly enhanced the rate performances of both positive and negative electrodes and improved the capacity retention upon cycling. The obtained results demonstrated that the addition of MWCNTs in low amounts to the electrode composition enables an increase in both energy and power density of a Li-ion battery.


Sign in / Sign up

Export Citation Format

Share Document