scholarly journals Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hao Li ◽  
Meng Wang ◽  
Biao Huang ◽  
Su-Wen Zhu ◽  
Jun-Jie Zhou ◽  
...  

AbstractRadiotherapy is an important therapeutic strategy for cancer treatment through direct damage to cancer cells and augmentation of antitumor immune responses. However, the efficacy of radiotherapy is limited by hypoxia-mediated radioresistance and immunosuppression in tumor microenvironment. Here, we construct a stabilized theranostic nanoprobe based on quantum dots emitting in the near-infrared IIb (NIR-IIb, 1,500–1,700 nm) window modified by catalase, arginine–glycine–aspartate peptides and poly(ethylene glycol). We demonstrate that the nanoprobes effectively aggregate in the tumor site to locate the tumor region, thereby realizing precision radiotherapy with few side-effects. In addition, nanoprobes relieve intratumoral hypoxia and reduce the tumor infiltration of immunosuppressive cells. Moreover, the nanoprobes promote the immunogenic cell death of cancer cells to trigger the activation of dendritic cells and enhance T cell-mediated antitumor immunity to inhibit tumor metastasis. Collectively, the nanoprobe-mediated immunogenic radiotherapy can boost the abscopal effect to inhibit tumor metastasis and prolong survival.

2020 ◽  
Vol 6 (33) ◽  
pp. eaba3546 ◽  
Author(s):  
Xuan Yi ◽  
Hailin Zhou ◽  
Yu Chao ◽  
Saisai Xiong ◽  
Jing Zhong ◽  
...  

We discovered that attenuated Salmonella after intravenous injection would proliferate within various types of solid tumors but show rapid clearance in normal organs, without rendering notable toxicity. Bacteria-induced inflammation would trigger thrombosis in the infected tumors by destroying tumor blood vessels. Six types of tested tumors would all turn into darkened color with strong near-infrared absorbance, as observed by photoacoustic imaging. Under laser irradiation, those bacterial-infected tumors would be effectively ablated. Because of the immune-stimulation function, such bacteria-based photothermal therapy (PTT) would subsequently trigger antitumor immune responses, which could be further enhanced by immune checkpoint blockade to effectively suppress the growth of abscopal tumors. A robust immune memory effect to reject rechallenged tumors is also observed after bacteria-based PTT. Our work demonstrates that bacteria by themselves could act as a tumor-specific PTT agent to enable photoimmunotherapy cancer therapy to inhibit tumor metastasis and recurrence.


2020 ◽  
Vol 56 (90) ◽  
pp. 14051-14054
Author(s):  
Yi Dai ◽  
Yang Zhu ◽  
Junjie Cheng ◽  
Juan Shen ◽  
Hai Huang ◽  
...  

Pt–furoxan, a nitric oxide-releasing platinum(iv) prodrug, exhibits a dual function by releasing cytotoxic cisplatin to induce cell apoptosis, and signaling molecule NO to inhibit tumor metastasis.


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7157-7165 ◽  
Author(s):  
Jiangfeng Du ◽  
Xin Wang ◽  
Xinghua Dong ◽  
Chenyang Zhang ◽  
Linqiang Mei ◽  
...  

PVP-Cu3BiSe3 nanoparticles with strong X-ray attenuation ability and high absorption of NIR-II light could enhance radiothermotherapy and inhibit tumor metastasis.


2019 ◽  
Vol 27 (4) ◽  
pp. 1068-1074 ◽  
Author(s):  
Xu Zhang ◽  
Takahito Moriwaki ◽  
Tsuyoshi Kawabata ◽  
Shinji Goto ◽  
Ke-Xiang Liu ◽  
...  

Abstract Background Inflammation has been demonstrated to promote cancer metastasis. Due to the well-known systemic inflammatory responses (SIR) after major surgery, it is critical to investigate and attenuate SIR-induced tumor metastasis of cancer patients suffering surgical procedures. Methods C57BL/6 mice were intravenously injected with Lewis lung cancer cells at 6, 24, and 72 h after the induction of intestinal ischemia/reperfusion (I/R) injury. We found that the number of tumor nodules significantly increased in lungs of mice injected with cancer cells at 6 h but not at 24 and 72 h after I/R injury. The administration of nicaraven 30 min before and 24 h after I/R injury effectively attenuated the enhanced tumor metastasis to lungs. Protein array showed the increase of various cytokines in plasma of mice at 6 h after I/R injury, but many of them were attenuated by the administration of nicaraven. Immunostaining indicated the increase of Ly6g-, CD206-, and CD11c-positive inflammatory cells in the lungs, but it was also attenuated by nicaraven administration. Conclusions Postoperative SIR-induced tumor metastasis have been clearly evidenced in our experimental model, and the administration of nicaraven may ameliorate the SIR-induced tumor metastasis by suppressing inflammatory responses.


Oncogene ◽  
2020 ◽  
Vol 39 (39) ◽  
pp. 6139-6156 ◽  
Author(s):  
Qinyao Wei ◽  
Yun Qian ◽  
Jun Yu ◽  
Chi Chun Wong

Abstract Tumor metastasis is the major cause of mortality from cancer. Metabolic rewiring and the metastatic cascade are highly intertwined, co-operating to promote multiple steps of cancer metastasis. Metabolites generated by cancer cells influence the metastatic cascade, encompassing epithelial-mesenchymal transition (EMT), survival of cancer cells in circulation, and metastatic colonization at distant sites. A variety of molecular mechanisms underlie the prometastatic effect of tumor-derived metabolites, such as epigenetic deregulation, induction of matrix metalloproteinases (MMPs), promotion of cancer stemness, and alleviation of oxidative stress. Conversely, metastatic signaling regulates expression and activity of rate-limiting metabolic enzymes to generate prometastatic metabolites thereby reinforcing the metastasis cascade. Understanding the complex interplay between metabolism and metastasis could unravel novel molecular targets, whose intervention could lead to improvements in the treatment of cancer. In this review, we summarized the recent discoveries involving metabolism and tumor metastasis, and emphasized the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these aberrant situations in cancer.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Jing Cai ◽  
Lanqing Gong ◽  
Guodong Li ◽  
Jing Guo ◽  
Xiaoqing Yi ◽  
...  

AbstractThe poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial–mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.


2015 ◽  
Vol 211 (2) ◽  
pp. 215-217 ◽  
Author(s):  
Stefan Linder

The membrane-tethered membrane type 1–matrix metalloproteinase (MT1-MMP) mediates proteolysis-based invasive tumor growth. In this issue, Marchesin et al. (2015. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201506002) describe a tug-of-war mechanism regulating dynein and kinesin motors to drive endosome tubulation and MT1-MMP delivery to the surface of cancer cells, identifying a crucial regulatory axis for tumor metastasis.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Áurea Lima ◽  
Isa Peixoto ◽  
Susana Sarandão ◽  
Daniel Melo ◽  
Ângelo Rodrigues ◽  
...  

The tumor-to-tumor metastasis phenomenon remains fairly uncommon, with fewer than 100 cases described to present time. Virtually any tumor can be a donor or a recipient neoplasm. Nevertheless, renal carcinomas have been implicated as the most common malignant tumors to harbor metastasis, while lung and breast tumors are the most frequent donors. This article reports an extremely rare case of a breast cancer metastasis in a lung metastasis of clear cell type renal cell carcinoma that met all Campbell and coworkers’ tumor-to-tumor metastasis criteria. Additionally, we present the literature case reports of breast cancer metastasis in renal cell carcinomas and try to discuss the mechanisms underlying its occurrence. Since this phenomenon identification will impact the therapeutic strategy and it is not easily detected by image, the anatomopathological study of any and all suspicious lesions is of crucial importance. To the best of our knowledge, this is the first report of a metastasis inside a metastasis.


2018 ◽  
Author(s):  
Dinesh Mishra ◽  
Sisi Wang ◽  
Zhicheng Jin ◽  
Eric Lochner ◽  
Hedi Mattoussi

<p>We describe the growth and characterization of highly fluorescing, near-infrared-emitting nanoclusters made of bimetallic Au<sub>25-x</sub>Ag<sub>x</sub> cores, prepared using various monothiol-appended hydrophobic and hydrophilic ligands. The reaction uses well-defined triphenylphosphine-protected Au<sub>11</sub> clusters (as precursors), which are reacted with Ag(I)-thiolate complexes. The prepared nanoclusters are small (diameter < 2nm, as characterized by TEM) with emission peak at 760 nm and long lifetime (~12 µs). The quantum yield measured for these materials was 0.3 - 0.4 depending on the ligand. XPS measurements show the presence of both metal atoms in the core, with measured binding energies that agree with reported values for nanocluster materials. The NIR emission combined with high quantum yield, small size and ease of surface functionalization afforded by the coating, make these materials suitable to implement investigations that address fundamental questions and potentially useful for biological sensing and imaging applications.<br></p>


Sign in / Sign up

Export Citation Format

Share Document