scholarly journals Evolution of microscopic heterogeneity and dynamics in choline chloride-based deep eutectic solvents

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Stephanie Spittle ◽  
Derrick Poe ◽  
Brian Doherty ◽  
Charles Kolodziej ◽  
Luke Heroux ◽  
...  

AbstractDeep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.

Author(s):  
Gustavo Gomes ◽  
Renan Mattioli ◽  
Julio Cezar Pastre

The use of non-conventional solvent systems, such as deep eutectic solvents (DES), for biomass processing is a growing interest. DES are formed by two or more components, usually solids at room temperature, which can interact with each other via hydrogen bonding, from a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), resulting in a liquid phase. The most studied HBA in the literature is choline chloride with several HBD and their use have been extensively reviewed. However, other abundant and natural HBA can be successfully applied on the preparation of different DES, e.g., amino acids. These amino acid-based DES have been used in biomass pretreatment, providing the fractionation of the main macromolecular components by lignin solubilization. In addition, amino acid-based DES can be applied in biomass chemical conversion to obtaining platform chemicals such as furanic derivatives. Bearing this in mind, this review focuses on exploring the use of amino acid-based DES on biomass processing, from pretreatment to chemical conversion.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongzhuang Liu ◽  
Noemi Deak ◽  
Zhiwen Wang ◽  
Haipeng Yu ◽  
Lisanne Hameleers ◽  
...  

AbstractStabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired ‘stabilization’ function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high β-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the β-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1170
Author(s):  
Yuan Zhu ◽  
Benkun Qi ◽  
Xinquan Liang ◽  
Jianquan Luo ◽  
Yinhua Wan

Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.


Soft Matter ◽  
2021 ◽  
Author(s):  
Meng Sun ◽  
Qintang Li ◽  
Xiao Chen

Luminescent gels have been successfully fabricated through the self-assembly of sodium cholate and a europium ion in choline chloride-based deep eutectic solvents.


2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


2021 ◽  
pp. 116928
Author(s):  
Jie Zhu ◽  
Hui Shao ◽  
Lin Feng ◽  
Yingzhou Lu ◽  
Hong Meng ◽  
...  

This paper presents a review of recent results on homogeneous turbulence. We discuss results obtained by direct numerical simulation as well as phenomenological models for the interpretation and understanding of these flows. In particular, we show that homogeneous turbulence can be well described in terms of a weakly correlated, random background field that is generally consistent with the classical Kolmogorov theory of turbulence, and strongly correlated, highly localized structures, that are largely responsible for intermittency effects and deviations from Kolmogorov scaling. These results give a unified dynamical picture of turbulence that describes both the energetics and intermittency of homogeneous turbulence, and allows us to develop a quantitative model for the description of the statistics of turbulence at small scales.


Sign in / Sign up

Export Citation Format

Share Document