scholarly journals Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Birte Hollmann ◽  
Mark Perkins ◽  
Veeren M. Chauhan ◽  
Jonathan W. Aylott ◽  
Kim R. Hardie

AbstractUnderstanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth; however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a tool, to observe physiological pH changes in biofilms in real time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify therapeutic solutions to improve oral health.

2020 ◽  
Author(s):  
Birte Blunk ◽  
Mark Perkins ◽  
Veeren M. Chauhan ◽  
Jonathan W. Aylott ◽  
Kim R. Hardie

AbstractUnderstanding the dynamic environmental microniches of biofilms will permit us to detect, manage and exploit these communities. The components and architecture of biofilms have been interrogated in depth, however, little is known about the environmental microniches present. This is primarily because of the absence of tools with the required measurement sensitivity and resolution to detect these changes. We describe the application of ratiometric fluorescent pH-sensitive nanosensors, as a novel tool, to observe physiological pH changes in biofilms in real-time. Nanosensors comprised two pH-sensitive fluorophores covalently encapsulated with a reference pH-insensitive fluorophore in an inert polyacrylamide nanoparticle matrix. The nanosensors were used to analyse the real-time three-dimensional pH variation for two model biofilm formers: (i) opportunistic pathogen Pseudomonas aeruginosa, and (ii) oral pathogen Streptococcus mutans. The detection of sugar metabolism in real time by nanosensors provides a potential application to identify novel therapeutic solutions to improve oral health.


2009 ◽  
Vol 78 (3) ◽  
pp. 939-953 ◽  
Author(s):  
Iwona Bucior ◽  
Keith Mostov ◽  
Joanne N. Engel

ABSTRACT Pseudomonas aeruginosa, an important opportunistic pathogen of humans, exploits epithelial damage to establish infection. We have rigorously explored the role of N-glycoproteins and heparan sulfate proteoglycans (HSPGs) in P. aeruginosa-mediated attachment and subsequent downstream events at the apical (AP) and basolateral (BL) surfaces of polarized epithelium. We demonstrate that the N-glycan chains at the AP surface are necessary and sufficient for binding, invasion, and cytotoxicity to kidney (MDCK) and airway (Calu-3) cells grown at various states of polarization on Transwell filters. Upregulation of N-glycosylation enhanced binding, whereas pharmacologic inhibition of N-glycosylation or infection of MDCK cells defective in N-glycosylation resulted in decreased binding. In contrast, at the BL surface, the HS moiety of HSPGs mediated P. aeruginosa binding, cytotoxicity, and invasion. In incompletely polarized epithelium, HSPG abundance was increased at the AP surface, explaining its increased susceptibility to P. aeruginosa colonization and damage. Using MDCK cells grown as three-dimensional cysts as a model for epithelial organs, we show that P. aeruginosa specifically colocalized with HS-rich areas at the BL membrane but with complex N-glycans at the AP surface. Finally, P. aeruginosa bound to HS chains and N-glycans coated on plastic surfaces, showing the highest binding affinity toward isolated HS chains. Together, these findings demonstrate that P. aeruginosa recognizes distinct receptors on the AP and BL surfaces of polarized epithelium. Changes in the composition of N-glycan chains and/or in the distribution of HSPGs may explain the enhanced susceptibility of damaged epithelium to P. aeruginosa.


2021 ◽  
Author(s):  
William Y. Harvey ◽  
Cynthia Gagné-Thivierge ◽  
Sepideh Fakari ◽  
Jean Barbeau ◽  
Steve Charette ◽  
...  

The bacterium Pseudomonas aeruginosa is an opportunistic pathogen in certain organisms, including humans, but can also survive and proliferate in natural and engineered water systems. Microfluidic technology can address hydrodynamic questions related to bacterial contamination of water flow systems and infrastructure. In this work, a microfluidic approach was devised to study the effect of shear stresses on biofilms from a dental unit waterline (DUWL)-isolated P. aeruginosa strain, PPF-1. During application of relevant shear stress levels to DUWLs, the response of the PPF-1 biofilm was observed and compared to a clinical P. aeruginosa reference strain, PAO1. The response measurements were repeated for biofilms exposed to additional Mg2+ ions. Using a microfluidic approach to transforming optical density maps into three-dimensional images, we applied computational fluid dynamics simulations and determined the critical shear stresses for biofilm sloughing. In the absence of Mg2+, PPF-1 biofilms showed weaker attachment than PAO1 biofilms, resulting in continuous slough/regrowth cycles triggered by applied shear stresses of 1.42 +/- 0.32 Pa. Introducing Mg2+ into the PPF-1 biofilm culture medium seemed to place the biofilm into a viscoplastic mechanical state, thereby increasing mechanical stability, which resulted in elevated tolerances to shear stresses up to a critical value of 5.43 +/- 1.52 Pa. This resulted in a propensity for less frequent but more catastrophic sloughing events like that observed for the PAO1 reference strain. This suggests that in a low ionic environment, biofilms from the PPF-1 strain can result in higher and more continuous ejection of biofilm materials, possibly leading to increased downstream colonization of engineered flow systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amy V. Thees ◽  
Kathryn M. Pietrosimone ◽  
Clare K. Melchiorre ◽  
Jeremiah N. Marden ◽  
Joerg Graf ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa expresses a small molecular weight, cysteine-rich protein (PmtA), identified as a metallothionein (MT) protein family member. The MT family proteins have been well-characterized in eukaryotes as essential for zinc and copper homeostasis, protection against oxidative stress, and the ability to modify a variety of immune activities. Bacterial MTs share sequence homology, antioxidant chemistry, and heavy metal-binding capacity with eukaryotic MTs, however, the impact of bacterial MTs on virulence and infection have not been well-studied. In the present study, we investigated the role of PmtA in P. aeruginosa PAO1 using a PmtA-deficient strain (ΔpmtA). Here we demonstrated the virulence factor, pyocyanin, relies on the expression of PmtA. We showed that PmtA may be protective against oxidative stress, as an alternative antioxidant, glutathione, can rescue pyocyanin expression. Furthermore, the expression of phzM, which encodes a pyocyanin precursor enzyme, was decreased in the ΔpmtA mutant during early stationary phase. Upregulated pmtA expression was previously detected in confluent biofilms, which are essential for chronic infection, and we observed that the ΔpmtA mutant was disrupted for biofilm formation. As biofilms also modulate antibiotic susceptibility, we examined the ΔpmtA mutant susceptibility to antibiotics and found that the ΔpmtA mutant is more susceptible to cefepime and ciprofloxacin than the wild-type strain. Finally, we observed that the deletion of pmtA results in decreased virulence in a waxworm model. Taken together, our results support the conclusion that PmtA is necessary for the full virulence of P. aeruginosa and may represent a potential target for therapeutic intervention.


2019 ◽  
Vol 78 ◽  
pp. 01004
Author(s):  
Shan Li ◽  
Jiangning Yao ◽  
Haoming Li

Pseudomonas aeruginosa is a Gram-negative organism that can survive under harsh conditions, and it is also an opportunistic pathogen that can produce cell-associated extracellular virulence factors. Several of these virulence factors have been demonstrated to be regulated by quorum sensing (QS). Plantain Herb has been used as antibacterial agents for many centuries in China. In this study, we analyzed Plantain Herb Extracts (PHE) at the concentration of 16 μg/mL (Group A, MIC), 8 μg/mL (Group B, 1/2 MIC) and 4 μg/mL (Group C, 1/4 MIC) for inhibition of the virulence factors production and biofilm formation in P. aeruginosa PAO1. The virulence factors included pyocyanin, rhamnolipids, protease and alginate. PHE showed significant inhibition of virulence factors as compared to the control group without interfering its growth. Thus, PHE might be a potent QS inhibitor and anti-biofilm agent in the treatment of Pseudomonas aeruginosa infections.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Eva Pericolini ◽  
Bruna Colombari ◽  
Gianmarco Ferretti ◽  
Ramona Iseppi ◽  
Andrea Ardizzoni ◽  
...  

2018 ◽  
Author(s):  
Shi-qi An ◽  
Julie Murtagh ◽  
Kate B. Twomey ◽  
Manoj K. Gupta ◽  
Timothy P. O’Sullivan ◽  
...  

ABSTRACTThe opportunistic pathogen Pseudomonas aeruginosa can participate in inter-species communication through signaling by cis-2-unsaturated fatty acids of the diffusible signal factor (DSF) family. Sensing these signals involves the histidine kinase PA1396 and leads to altered biofilm formation and increased tolerance to various antibiotics. Here, we show that the membrane-associated sensory input domain of PA1396 has five trans-membrane helices, two of which are required for DSF sensing. DSF binding is associated with enhanced auto-phosphorylation of PA1396 incorporated into liposomes. Further, we examined the ability of synthetic DSF analogues to modulate or inhibit PA1396 activity. Several of these analogues block the ability of DSF to trigger auto-phosphorylation and gene expression, whereas others act as inverse agonists reducing biofilm formation and antibiotic tolerance, both in vitro and in murine infection models. These analogues may thus represent lead compounds for novel adjuvants to improve the efficacy of existing antibiotics.


2021 ◽  
Author(s):  
Xiangke Duan ◽  
Yanrong Pan ◽  
Zhao Cai ◽  
Yumei Liu ◽  
Yingdan Zhang ◽  
...  

Abstract BackgroundPseudomonas aeruginosa is a notorious opportunistic pathogen causing various biofilm-related infections. Biofilm formation is a unique microbial strategy that allows P. aeruginosa to survive adverse conditions such as antibiotic treatment and human immune responses. ResultsIn this study, we experimentally evolved P. aeruginosa PAO1 biofilms for cyclic treatment in the presence of high dose of imipenem, and enriched hyperbiofilm mutants within six cycles in two independent lineages. The competition assay showed the evolved hyperbiofilm mutants can outcompete the ancestral strain within biofilm by prolonging the biofilm mode of growth but not in planktonic cultures. Whole-genome sequencing analysis revealed the hyperbiofilm phenotype is caused by point mutations in rpoS gene in all independently evolved mutants and the same mutation was found in P. aeruginosa clinical isolates. We further showed that mutation in rpoS enhanced biofilm formation by prolonging the biofilm mode of growth and elevating the intracellular c-di-GMP level. Mutation in rpoS increased pyocyanin production and virulence in both P. aeruginosa laboratory strains and clinical isolates. ConclusionHere, our study revealed that antibiotic treatment of biofilm-related P. aeruginosa infections might induce a hyperbiofilm phenotype via rpoS mutation, which might partially explain antimicrobial treatment failure of many P. aeruginosa biofilm-related infections.


Microbiology ◽  
2005 ◽  
Vol 151 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Denis Tielker ◽  
Stephanie Hacker ◽  
Remy Loris ◽  
Martin Strathmann ◽  
Jost Wingender ◽  
...  

Pseudomonas aeruginosa is an opportunistic pathogen which causes a variety of diseases, including respiratory tract infections in patients suffering from cystic fibrosis. Therapeutic treatment of P. aeruginosa infections is still very difficult because the bacteria exhibit high intrinsic resistance against a variety of different antibiotics and, in addition, form stable biofilms, e.g. in the human lung. Several virulence factors are produced by P. aeruginosa, among them the two lectins LecA and LecB, which exert different cytotoxic effects on respiratory epithelial cells and presumably facilitate bacterial adhesion to the airway mucosa. Here, the physiology has been studied of the lectin LecB, which binds specifically to l-fucose. A LecB-deficient P. aeruginosa mutant was shown to be impaired in biofilm formation when compared with the wild-type strain, suggesting an important role for LecB in this process. This result prompted an investigation of the subcellular localization of LecB by cell fractionation and subsequent immunoblotting. The results show that LecB is abundantly present in the bacterial outer-membrane fraction. It is further demonstrated that LecB could be released specifically by treatment of the outer-membrane fraction with p-nitrophenyl α-l-fucose, whereas treatment with d-galactose had no effect. In contrast, a LecB protein carrying the mutation D104A, which results in a defective sugar-binding site, was no longer detectable in the membrane fraction, suggesting that LecB binds to specific carbohydrate ligands located at the bacterial cell surface. Staining of biofilm cells using fluorescently labelled LecB confirmed the presence of these ligands.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1638
Author(s):  
Karl A. Glen ◽  
Iain L. Lamont

Pseudomonas aeruginosa is a major opportunistic pathogen, causing a wide range of acute and chronic infections. β-lactam antibiotics including penicillins, carbapenems, monobactams, and cephalosporins play a key role in the treatment of P. aeruginosa infections. However, a significant number of isolates of these bacteria are resistant to β-lactams, complicating treatment of infections and leading to worse outcomes for patients. In this review, we summarize studies demonstrating the health and economic impacts associated with β-lactam-resistant P. aeruginosa. We then describe how β-lactams bind to and inhibit P. aeruginosa penicillin-binding proteins that are required for synthesis and remodelling of peptidoglycan. Resistance to β-lactams is multifactorial and can involve changes to a key target protein, penicillin-binding protein 3, that is essential for cell division; reduced uptake or increased efflux of β-lactams; degradation of β-lactam antibiotics by increased expression or altered substrate specificity of an AmpC β-lactamase, or by the acquisition of β-lactamases through horizontal gene transfer; and changes to biofilm formation and metabolism. The current understanding of these mechanisms is discussed. Lastly, important knowledge gaps are identified, and possible strategies for enhancing the effectiveness of β-lactam antibiotics in treating P. aeruginosa infections are considered.


Sign in / Sign up

Export Citation Format

Share Document