scholarly journals PmtA Regulates Pyocyanin Expression and Biofilm Formation in Pseudomonas aeruginosa

2021 ◽  
Vol 12 ◽  
Author(s):  
Amy V. Thees ◽  
Kathryn M. Pietrosimone ◽  
Clare K. Melchiorre ◽  
Jeremiah N. Marden ◽  
Joerg Graf ◽  
...  

The opportunistic pathogen Pseudomonas aeruginosa expresses a small molecular weight, cysteine-rich protein (PmtA), identified as a metallothionein (MT) protein family member. The MT family proteins have been well-characterized in eukaryotes as essential for zinc and copper homeostasis, protection against oxidative stress, and the ability to modify a variety of immune activities. Bacterial MTs share sequence homology, antioxidant chemistry, and heavy metal-binding capacity with eukaryotic MTs, however, the impact of bacterial MTs on virulence and infection have not been well-studied. In the present study, we investigated the role of PmtA in P. aeruginosa PAO1 using a PmtA-deficient strain (ΔpmtA). Here we demonstrated the virulence factor, pyocyanin, relies on the expression of PmtA. We showed that PmtA may be protective against oxidative stress, as an alternative antioxidant, glutathione, can rescue pyocyanin expression. Furthermore, the expression of phzM, which encodes a pyocyanin precursor enzyme, was decreased in the ΔpmtA mutant during early stationary phase. Upregulated pmtA expression was previously detected in confluent biofilms, which are essential for chronic infection, and we observed that the ΔpmtA mutant was disrupted for biofilm formation. As biofilms also modulate antibiotic susceptibility, we examined the ΔpmtA mutant susceptibility to antibiotics and found that the ΔpmtA mutant is more susceptible to cefepime and ciprofloxacin than the wild-type strain. Finally, we observed that the deletion of pmtA results in decreased virulence in a waxworm model. Taken together, our results support the conclusion that PmtA is necessary for the full virulence of P. aeruginosa and may represent a potential target for therapeutic intervention.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Sung Ryul Lee

Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.


2014 ◽  
Vol 60 (4) ◽  
pp. 227-235 ◽  
Author(s):  
Hua Yu ◽  
Xiaomei He ◽  
Wei Xie ◽  
Junzhi Xiong ◽  
Halei Sheng ◽  
...  

Elastase LasB, an important extracellular virulence factor, is shown to play an important role in the pathogenicity of Pseudomonas aeruginosa during host infection. However, the role of LasB in the life cycle of P. aeruginosa is not completely understood. This report focuses on the impact of LasB on biofilm formation of P. aeruginosa PAO1. Here, we reported that the lasB deletion mutant (ΔlasB) displayed significantly decreased bacterial attachment, microcolony formation, and extracellular matrix linkage in biofilm associated with decreased biosynthesis of rhamnolipids compared with PAO1 and lasB complementary strain (ΔlasB+). Nevertheless, the ΔlasB developed restored biofilm formation with supplementation of exogenous rhamnolipids. Further gene expression analysis revealed that the mutant of lasB could result in the downregulation of rhamnolipid synthesis at the transcriptional level. Taken together, these results indicated that LasB could promote biofilm formation partly through the rhamnolipid-mediated regulation.


2006 ◽  
Vol 50 (5) ◽  
pp. 1680-1688 ◽  
Author(s):  
Yusuf Nalca ◽  
Lothar Jänsch ◽  
Florian Bredenbruch ◽  
Robert Geffers ◽  
Jan Buer ◽  
...  

ABSTRACT The administration of macrolides such as azithromycin for chronic pulmonary infection of cystic fibrosis patients has been reported to be of benefit. Although the mechanisms of action remain obscure, anti-inflammatory effects as well as interference of the macrolide with Pseudomonas aeruginosa virulence factor production have been suggested to contribute to an improved clinical outcome. In this study we used a systematic approach and analyzed the impact of azithromycin on the global transcriptional pattern and the protein expression profile of P. aeruginosa PAO1 cultures versus those in untreated controls. The most remarkable result of this study is the finding that azithromycin exhibited extensive quorum-sensing antagonistic activities. In accordance with the inhibition of the quorum-sensing systems, virulence factor production was diminished and the oxidative stress response was impaired, whereas the type III secretion system was strongly induced. Moreover, P. aeruginosa motility was reduced, which probably accounts for the previously observed impaired biofilm formation capabilities of azithromycin-treated cultures. The interference of azithromycin with quorum-sensing-dependent virulence factor production, biofilm formation, and oxidative stress resistance in P. aeruginosa holds great promise for macrolide therapy in cystic fibrosis. Clearly quorum-sensing antagonist macrolides should be paid more attention in the management of chronic P. aeruginosa infections, and as quorum-sensing antagonists, macrolides might gain vital importance for more general application against chronic infections.


2021 ◽  
Vol 22 (22) ◽  
pp. 12561
Author(s):  
Maryam Dadashi ◽  
Lin Chen ◽  
Ahmad Nasimian ◽  
Saeid Ghavami ◽  
Kangmin Duan

The opportunistic pathogen Pseudomonas aeruginosa is a significant cause of infection in immunocompromised individuals, cystic fibrosis patients, and burn victims. To benefit its survival, the bacterium adapt to either a motile or sessile lifestyle when infecting the host. The motile bacterium has an often activated type III secretion system (T3SS), which is virulent to the host, whereas the sessile bacterium harbors an active T6SS and lives in biofilms. Regulatory pathways involving Gac-Rsm or secondary messengers such as c-di-GMP determine which lifestyle is favorable for P. aeruginosa. Here, we introduce the RNA binding protein RtcB as a modulator of the switch between motile and sessile bacterial lifestyles. Using the wild-type P. aeruginosa PAO1, and a retS mutant PAO1(∆retS) in which T3SS is repressed and T6SS active, we show that deleting rtcB led to simultaneous expression of T3SS and T6SS in both PAO1(∆rtcB) and PAO1(∆rtcB∆retS). The deletion of rtcB also increased biofilm formation in PAO1(∆rtcB) and restored the motility of PAO1(∆rtcB∆retS). RNA-sequencing data suggested RtcB as a global modulator affecting multiple virulence factors, including bacterial secretion systems. Competitive killing and infection assays showed that the three T6SS systems (H1, H2, and H3) in PAO1(∆rtcB) were activated into a functional syringe, and could compete with Escherichia coli and effectively infect lettuce. Western blotting and RT-PCR results showed that RtcB probably exerted its function through RsmA in PAO1(∆rtcB∆retS). Quantification of c-di-GMP showed an elevated intracellular levels in PAO1(∆rtcB), which likely drove the switch between T6SS and T3SS, and contributed to the altered phenotypes and characteristics observed. Our data demonstrate a pivotal role of RtcB in the virulence of P. aeruginosa by controlling multiple virulence determinants, such as biofilm formation, motility, pyocyanin production, T3SS, and T6SS secretion systems towards eukaryotic and prokaryotic cells. These findings suggest RtcB as a potential target for controlling P. aeruginosa colonization, establishment, and pathogenicity.


2020 ◽  
Author(s):  
Eden Ozer ◽  
Karin Yaniv ◽  
Einat Chetrit ◽  
Anastasya Boyarski ◽  
Michael M. Meijler ◽  
...  

AbstractThe opportunistic pathogen, Pseudomonas aeruginosa, a flagellated bacterium, is one of the top model organisms for studying biofilm formation. In order to elucidate the role of the bacteria flagella in biofilm formation, we developed a new tool for flagella bio-tracking. We have site-specifically labeled the bacterial flagella by incorporating an unnatural amino acid into the flagella monomer via genetic code expansion. This enabled us to label and track the bacterial flagella during biofilm maturation. Direct, live imaging revealed for the first-time presence and synthesis of flagella throughout the biofilm lifecycle. To ascertain the possible role of the flagella in the strength of a biofilm we produced a “flagella knockout” strain and compared its biofilm to that of the wild type strain. Results showed a one order of magnitude stronger biofilm structure in the wild type in comparison to the flagella knockout strain. This suggests a newly discovered structural role for bacterial flagella in biofilm structure, possibly acting as a scaffold. Based on our findings we suggest a new model for biofilm maturation dynamic and underscore the importance of direct evidence from within the biofilm.


Microbiology ◽  
2014 ◽  
Vol 160 (1) ◽  
pp. 165-178 ◽  
Author(s):  
Carly V. Redelman ◽  
Shubham Chakravarty ◽  
Gregory G. Anderson

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with the capacity to cause serious disease, including chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. These infections are treated with high concentrations of antibiotics. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified, including the magnesium transporter protein MgtE. We have recently found that isogenic deletion of mgtE leads to increased cytotoxicity through effects on the type III secretion system. To explore the role of the CF lung environment in MgtE activity, we investigated mgtE transcriptional regulation following antibiotic treatment. Utilizing quantitative real-time-PCR, we have demonstrated an increase in mgtE transcript levels following antibiotic treatment with most of the 12 antibiotics tested. To begin to determine the regulatory network governing mgtE expression, we screened a transposon-mutant library of P. aeruginosa to look for mutants with potentially altered mgtE activity, using cytotoxicity as a readout. In this screen, we observed that AlgR, which regulates production of the biofilm polysaccharide alginate, alters MgtE-mediated cytotoxicity. This cross-talk between MgtE and AlgR suggests that AlgR is involved in linking external inducing signals (e.g. antibiotics) to mgtE transcription and downstream virulence and biofilm activities. Analysing such interactions may lead to a better understanding of how the CF lung environment shapes P. aeruginosa biofilm infections.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Author(s):  
Shuyi Hou ◽  
Jiaqin Zhang ◽  
Xiaobo Ma ◽  
Qiang Hong ◽  
Lili Fang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document