scholarly journals Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants

Author(s):  
Johannes Wessely ◽  
Andreas Gattringer ◽  
Frédéric Guillaume ◽  
Karl Hülber ◽  
Günther Klonner ◽  
...  

AbstractModelling of climate-driven range shifts commonly treats species as ecologically homogeneous units. However, many species show intraspecific variation of climatic niches and theory predicts that such variation may lead to counterintuitive eco-evolutionary dynamics. Here, we incorporate assumed intraspecific niche variation into a dynamic range model and explore possible consequences for six high-mountain plant species of the European Alps under scenarios of twenty-first century climate warming. At the species level, the results indicate massive range loss independent of intraspecific variation. At the intraspecific level, the model predicts a decrease in the frequency of warm-adapted haplotypes in five species. The latter effect is probably driven by a combination of leading-edge colonization and priority effects within the species’ elevational range and was weakest when leading-edge expansion was constrained by mountain topography The resulting maladaptation may additionally increase the risk that alpine plants face from shrinkage of their ranges in a warming climate.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


2017 ◽  
Vol 56 (6) ◽  
pp. 1707-1729 ◽  
Author(s):  
Marlis Hofer ◽  
Johanna Nemec ◽  
Nicolas J. Cullen ◽  
Markus Weber

AbstractThis study explores the potential of different predictor strategies for improving the performance of regression-based downscaling approaches. The investigated local-scale target variables are precipitation, air temperature, wind speed, relative humidity, and global radiation, all at a daily time scale. Observations of these target variables are assessed from three sites in close proximity to mountain glaciers: 1) the Vernagtbach station in the European Alps, 2) the Artesonraju measuring site in the tropical South American Andes, and 3) the Mount Brewster measuring site in the Southern Alps of New Zealand. The large-scale dataset being evaluated is the ERA-Interim dataset. In the downscaling procedure, particular emphasis is put on developing efficient yet not overfit models from the limited information in the temporally short (typically a few years) observational records of the high mountain sites. For direct (univariate) predictors, optimum scale analysis turns out to be a powerful means to improve the forecast skill without the need to increase the downscaling model complexity. Yet the traditional (multivariate) predictor sets show generally higher skill than the direct predictors for all variables, sites, and days of the year. Only in the case of large sampling uncertainty (identified here to particularly affect observed precipitation) is the use of univariate predictor options justified. Overall, the authors find a range in forecast skill among the different predictor options applied in the literature up to 0.5 (where 0 indicates no skill, and 1 represents perfect skill). This highlights that a sophisticated predictor selection (as presented in this study) is essential in the development of realistic, local-scale scenarios by means of downscaling.


2021 ◽  
Author(s):  
Diego Cusicanqui ◽  
Antoine Rabatel ◽  
Xavier Bodin ◽  
Christian Vincent ◽  
Emmanuel Thibert ◽  
...  

<p>Glacial and periglacial environments are highly sensitive to climate change, even more in mountain areas where warming is faster and, as a consequence, perennial features of the cryosphere like glaciers and permafrost have been fast evolving in the last decades. In the European Alps, glaciers retreat and permafrost thawing have led to the destabilization of mountain slopes, threatening human infrastructures and inhabitants. The observation of such changes at decadal scales is often limited to sparse in situ observations.</p><p>Here, we present three study cases of mountain permafrost sites based on a multidisciplinary approach over almost seven decades. The goal is to investigate and quantify morphodynamic changes and understand the causes of these evolutions. We used stereo-photogrammetry techniques to generate orthophotos and (DEMs) from historical aerial images (available, in France since 1940s). From this, we produced diachronic comparison of DEMs to quantify vertical surface changes, as well as feature tracking techniques of multi-temporal digital orthophotos for estimating horizontal displacement rates. Locally, high-resolution datasets (i.e. LiDAR surveys, UAV acquisitions and Pléiades stereo imagery) were also exploited to improve the quality of photogrammetric products. In addition, we combine these results with geophysics (ERT and GPR) to estimate the ice content, geomorphological surveys to describe the complex environments and the relationship with climatic forcing.</p><p>The first study case is the Laurichard rock glacier, where we were able to quantify changes of emergence velocities, fluxes, and volume. Together with an acceleration of surface velocity, important surface lowering have been found over the period 1952-2019, with a striking spatiotemporal reversal of volume balance.</p><p>The second study site is the Tignes glacial and periglacial complex, where the changes of thermokarstic lakes surface were quantified. The results suggest that drainage probably affects the presence and the evolution of the largest thermorkarst. Here too, a significant ice loss was found on the central channel concomitant to an increase in surface velocities.</p><p>The third study site is the Chauvet glacial and periglacial complex where several historical outburst floods are recorded during the 20th century, likely related to the permafrost degradation, the presence of thermokarstic lakes, and an intra-glacial channel. The lateral convergence of ice flow, due to the terrain subsidence caused by the intense melting, may cause the closure of the channel with a subsequent refill of the thermokarstic depression and finally a new catastrophic event.</p><p>Our results highlight the important value of historical aerial photography for having a longer perspective on the evolution of the high mountain cryosphere, thanks to accurate quantification of pluri-annual changes of volume and surface velocity. For instance, we could evidence : (1) a speed-up of the horizontal displacements since the 1990s in comparison with the previous decades; (2) an important surface lowering related to various melting processes (ice-core, thermokarst) for the three study sites; (3) relationships between the observed evolution and the contemporaneous climate warming, with a long-term evolution controlled by the warming of the ground and short-term changes that may relate to snow or precipitation or to the activity of the glacial-periglacial landforms.</p>


2021 ◽  
Author(s):  
Felix Greifeneder ◽  
Klaus Haslinger ◽  
Georg Seyerl ◽  
Claudia Notarnicola ◽  
Massimiliano Zappa ◽  
...  

<p>Soil Moisture (SM) is one of the key observable variables of the hydrological cycle and therefore of high importance for many disciplines, from meteorology to agriculture. This contribution presents a comparison of different products for the mapping of SM. The aim was to identify the best available solution for the operational monitoring of SM as a drought indicator for the entire area of the European Alps, to be applied in the context of the Interreg Alpine Space project, the Alpine Drought Observatory.</p><p>The following datasets were considered: Soil Water Index (SWI) of the Copernicus Global Land Service [1]; ERA5 [2]; ERA5-Land [3]; UERRA MESCAN-SURFEX land-surface component [4]. All four datasets offer a different set of advantages and disadvantages related to their spatial resolution, update frequency and latency. As a reference, modelled SM time-series for 307 catchments in Switzerland were used [5]. Switzerland is well suited as a test case for the Alps, due to its different landscapes, from lowlands to high mountain.</p><p>The intercomparison was based on a correlation analysis of daily absolute SM values and the daily anomalies. Furthermore, the probability to detect certain events, such as persistent dry conditions, was evaluated for each of the SM datasets. First results showed that the temporal dynamics (both in terms of absolute values as well as anomalies) of the re-analysis datasets show a high correlation to the reference. A clear gradient, from the lowlands in the north to the high mountains in the south, with decreasing correlation is evident. The SWI data showed weak correlations to the temporal dynamics of the reference in general. Especially, during spring and the first part of the summer SM is significantly underestimated. This might be related to the influence of snowmelt, which is not taken into account in the two-layer water balance model used to model SM for deeper soil layers. Low coverage in the high mountain areas hampered a thorough comparison with the reference in these areas.</p><p>The results presented here are the foundation for selecting a suitable source for the operational mapping of SM for the Alpine Drought Observatory. The next steps will be to test the potential of MESCAN-SURFEX and ERA5-Land for the downscaling of ERA5 to take advantage of the low latency of ERA5 and the improved spatial detail of the other two datasets.  </p><p>Literature:</p><p>[1]  B. Bauer-marschallinger et al., “Sentinel-1 : Harnessing Assets and Overcoming Obstacles,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 520–539, 2019, doi: 10.1109/TGRS.2018.2858004.</p><p>[2]  H. Hersbach et al., “ERA5 hourly data on single levels from 1979 to present.” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018.</p><p>[3]  Copernicus Climate Change Service, “ERA5-Land hourly data from 2001 to present.” ECMWF, 2019, doi: 10.24381/CDS.E2161BAC.</p><p>[4]  E. Bazile, et al., “MESCAN-SURFEX Surface Analysis. Deliverable D2.8 of the UERRA Project,” 2017. Accessed: Jan. 11, 2020. [Online]. Available: http://www.uerra.eu/publications/deliverable-reports.html.</p><p>[5]  Brunner, et al.: Extremeness of recent drought events in    Switzerland: dependence on variable and return period choice, Nat. Hazards Earth Syst. Sci., 19, 2311–2323, https://doi.org/10.5194/nhess-19-2311-2019, 2019.</p>


2020 ◽  
Author(s):  
Zuonan Cao ◽  
Peter Kühn ◽  
Thomas Scholten

<p>The Tibetan Plateau is the third-largest glaciated area of the world and is one of the most sensitive regions due to climate warming, such as fast-melting permafrost, dust blow and overgrazing in recent decades. In the past 50 years, the warming rate on the Tibetan Plateau is higher than the global average warming rate with 0.40 ± 0.05 °C per decade. The climate warming is most distinct in the northeastern Tibetan Plateau, implying increasing air and surface temperatures as well as duration and depth of thawing. The main ecological consequences are a disturbed vegetation cover of the surface and a depletion of nutrient-rich topsoils (Baumann et al., 2009, 2014) coupled with an increase of greenhouse gas emissions, mainly CO<sub>2</sub> (Bosch et al., 2017). Due to the extreme environmental conditions resulting from the intense and rapid tectonic uplift, highly adaptive and sensitive ecosystem have developed, and the Plateau is considered to be a key area for the environmental evolution of Earth on regional and global scales, which is particularly sensitive to global warming (Jin et al., 2007; Qiu, 2008). Climate warming and land-use change can reduce soil organic carbon (SOC) stocks as well as soil nitrogen (N) and phosphorus (P) contents and soil quality. Many species showed their distributions by climate-driven shifts towards higher elevation. In Tibetan Plateau, however, the elevational variations of the alpine grassland are rare (Huang et al., 2018) and it is largely unknown how the grass line will respond to global warming and whether soils play a major role. With this research, the hypothesis is tested that soil quality, given by SOC, N and P stocks and content, is a driving factor for the position and structure of the grass line and that soil quality is one of the major controls of biodiversity and biomass production in high-mountain grassland ecosystems.</p><p>A Fourier transformation near and mid-infrared spectroscopy (FT-NMIRS) should be used to measure soil P fractions rapid and for large numbers of soil samples, and analyze environmental factors, including temperature, precipitation, soil development, soil fertility, and the ability of plants to adapt to the environmental impact of climate using FT-NMIRS.</p><p>We explored first near-infrared spectroscopy (NIRS) in soils from grassland on the Tibetan Plateau, northwestern China and extracted P fractions of 196 samples from Haibei Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences, at four depths increments (0-10 cm 10-20 cm 20-40 cm and 40-70 cm) with different pre-nutrient additions of nitrogen (N) an P. The fractionation data were correlated with the corresponding NIRS soil spectra and showed significant differences for depth increments and fertilizer amendments. The R<sup>2</sup> of NIRS calibrations to predict P in traditional Hedley fractions ranged between 0.12 and 0.90. The model prediction quality was higher for organic than for inorganic P fractions and changed with depth and fertilizer amendment. The results indicate that using NIRS to predict the P fractions can be a promising approach compared with traditional Hedley fractionation for soils in alpine grasslands on the Tibetan Plateau.</p>


2015 ◽  
Vol 282 (1812) ◽  
pp. 20151234 ◽  
Author(s):  
Seth M. Rudman ◽  
Mariano A. Rodriguez-Cabal ◽  
Adrian Stier ◽  
Takuya Sato ◽  
Julian Heavyside ◽  
...  

Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood ( Populus trichocarpa ) and three-spined stickleback ( Gasterosteus aculeatus ), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.


2019 ◽  
Author(s):  
A Jansen van Rensburg ◽  
M Robin ◽  
B C Phillips ◽  
J Van Buskirk

AbstractThe high mountain ranges of western Europe have had a profound effect on the recolonisation of Europe from glacial refugia. The Alps present a particularly interesting case, because they present an absolute barrier to dispersal to most lineages, obstructing recolonisation from multiple refugia in the Italian Alps. Here we investigate the effect of the European Alps on the the phylogeographic history of Rana temporaria across its range in Switzerland. Based on partial cytochrome b and COX1 sequences we find two mitochondrial lineages that occur roughly north and south of the alpine ridge bisecting Switzerland, with contact zones between them in the east and west. The northern haplogroup falls within the previously identified common western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, approximately the onset of the last glacial maximum, indicative of origins in separate refugia. Phylogenetic analyses suggest that the lineages originate from two refugia in northern Italy, and colonised Switzerland via trans- and curcum-alpine routes. Our results show that the European Alps is a semi-permeable barrier to dispersal for R. temporaria, and have contributed to the complex recolonisation history of Switzerland.


2015 ◽  
Author(s):  
Nathan P Lemoine ◽  
Jillian N Capdevielle ◽  
John D Parker

Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae, but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus) larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1˚ C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.


2021 ◽  
Vol 25 (6) ◽  
pp. 3245-3265
Author(s):  
Marit Van Tiel ◽  
Anne F. Van Loon ◽  
Jan Seibert ◽  
Kerstin Stahl

Abstract. Warm and dry summer days can lead to low streamflow due to a lack of rainfall and increased evaporation. In glacierized catchments, however, such periods can lead to a very different hydrological response as glaciers can supply an increased amount of meltwater, thereby compensating for the rainfall deficits. Here, we analyzed glacier-fed streamflow responses to warm and dry (WD) periods in long-term streamflow observations (>50 years). WD events during summer (June–September) were analyzed for catchments with varying glacier cover in western Canada, southwestern Norway, and the European Alps. WD events were defined by days with temperatures above a daily varying threshold, based on the 80th percentile of the respective long-term temperature data for that day in the year, and daily precipitation sums below a fixed threshold (<2 mm d−1) for a minimum duration of 7 d. Streamflow responses to these WD events were expressed as level of compensation (C) and were calculated as the event streamflow relative to the long-term streamflow regime. C≥100 % indicates that increased melt and other catchment storages could compensate, or even overcompensate, the rainfall deficit and increased evaporation. Results showed a wide range of compensation levels, both between catchments and between different WD events in a particular catchment. C was, in general, higher than 100 % for catchments with a relative glacier cover higher than 5 %–15 %, depending on region and month. June was the month with highest compensation levels, but this was likely more influenced by snowmelt than by glacier melt. For WD events in September, C was still higher than 100 % in many catchments, which likely indicates the importance of glacier melt as a streamflow contributor in late summer. There was a considerable range in C of different WD events for groups of catchments with similar glacier cover. This could be partly explained by antecedent conditions, such as the amount of snow fallen in the previous winter and the streamflow conditions 30 d before the WD event. Some decreasing trends in C were evident, especially for catchments in western Canada and the European Alps. Overall, our results suggest that glaciers do not compensate straightforwardly, and the range in compensation levels is large. The different streamflow components – glacier, snow and rain – and their variations are important for the buffering capacity and the compensating effect of glaciers in these high mountain water systems.


Sign in / Sign up

Export Citation Format

Share Document