scholarly journals A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus

2021 ◽  
Author(s):  
Allison August ◽  
Husain Z. Attarwala ◽  
Sunny Himansu ◽  
Shiva Kalidindi ◽  
Sophia Lu ◽  
...  

AbstractChikungunya virus (CHIKV) infection causes acute disease characterized by fever, rash and arthralgia, which progresses to severe and chronic arthritis in up to 50% of patients. Moreover, CHIKV infection can be fatal in infants or immunocompromised individuals and has no approved therapy or prevention. This phase 1, first-in-human, randomized, placebo-controlled, proof-of-concept trial conducted from January 2019 to June 2020 evaluated the safety and pharmacology of mRNA-1944, a lipid nanoparticle-encapsulated messenger RNA encoding the heavy and light chains of a CHIKV-specific monoclonal neutralizing antibody, CHKV-24 (NCT03829384). The primary outcome was to evaluate the safety and tolerability of escalating doses of mRNA-1944 administered via intravenous infusion in healthy participants aged 18–50 years. The secondary objectives included determination of the pharmacokinetics of mRNA encoding for CHKV-24 immunoglobulin heavy and light chains and ionizable amino lipid component and the pharmacodynamics of mRNA-1944 as assessed by serum concentrations of mRNA encoding for CHKV-24 immunoglobulin G (IgG), plasma concentrations of ionizable amino lipid and serum concentrations of CHKV-24 IgG. Here we report the results of a prespecified interim analysis of 38 healthy participants who received intravenous single doses of mRNA-1944 or placebo at 0.1, 0.3 and 0.6 mg kg−1, or two weekly doses at 0.3 mg kg−1. At 12, 24 and 48 h after single infusions, dose-dependent levels of CHKV-24 IgG with neutralizing activity were observed at titers predicted to be therapeutically relevant concentrations (≥1 µg ml−1) across doses that persisted for ≥16 weeks at 0.3 and 0.6 mg kg−1 (mean t1/2 approximately 69 d). A second 0.3 mg kg−1 dose 1 week after the first increased CHKV-24 IgG levels 1.8-fold. Adverse effects were mild to moderate in severity, did not worsen with a second mRNA-1944 dose and none were serious. To our knowledge, mRNA-1944 is the first mRNA-encoded monoclonal antibody showing in vivo expression and detectable ex vivo neutralizing activity in a clinical trial and may offer a treatment option for CHIKV infection. Further evaluation of the potential therapeutic use of mRNA-1944 in clinical trials for the treatment of CHIKV infection is warranted.

2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Xiang-Qing Yu ◽  
Gabriel J. Robbie ◽  
Yuling Wu ◽  
Mark T. Esser ◽  
Kathryn Jensen ◽  
...  

ABSTRACT MEDI4893 is an investigational immunoglobulin G1(κ) monoclonal antibody that specifically binds to and neutralizes alpha-toxin, a key Staphylococcus aureus virulence factor. A triple-amino-acid substitution, M252Y/S254T/T256E, was engineered into the MEDI4893 Fc region to extend its serum half-life. A phase 1, double-blind, dose escalation study was designed to evaluate the safety, tolerability, pharmacokinetics, anti-alpha-toxin-neutralizing activity, and antidrug antibody (ADA) response of MEDI4893 following a single intravenous infusion in healthy adults 18 to 65 years of age. Thirty-three subjects were randomly assigned to receive MEDI4893 at 225 mg (n = 3), 750 mg (n = 3), 2,250 mg (n = 8), or 5,000 mg (n = 12) or placebo (n = 7) and were followed for 360 days. Adverse events were mild or moderate in severity; none were serious. The MEDI4893 peak serum concentration increased dose proportionally from 77.2 μg/ml (225-mg dose) to 1,784 μg/ml (5,000-mg dose). The area under the concentration-time curve from 0 to 360 days also increased dose proportionally, from 4,840 μg · day/ml (225-mg dose) to 91,493 μg · day/ml (5,000-mg dose), indicating linear pharmacokinetics. MEDI4893's terminal half-life was estimated to be 80 to 112 days, which is approximately 4-fold longer than the half-lives of other human immunoglobulin G antibodies. The alpha-toxin-neutralizing activity in serum correlated highly with the MEDI4893 concentrations in serum. Three adults transiently tested positive for ADA on day 151, but this did not have an impact on MEDI4893 serum concentrations or the MEDI4893 safety profile; no subjects exhibited serum ADA at the study end. These data support the continued development of MEDI4893 for the prevention of S. aureus-mediated pneumonia. (This study has been registered at ClinicalTrials.gov under identifier NCT02296320.)


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1828
Author(s):  
Jared Kirui ◽  
Yara Abidine ◽  
Annasara Lenman ◽  
Koushikul Islam ◽  
Yong-Dae Gwon ◽  
...  

Chikungunya virus (CHIKV) is a re-emerging, mosquito-transmitted, enveloped positive stranded RNA virus. Chikungunya fever is characterized by acute and chronic debilitating arthritis. Although multiple host factors have been shown to enhance CHIKV infection, the molecular mechanisms of cell entry and entry factors remain poorly understood. The phosphatidylserine-dependent receptors, T-cell immunoglobulin and mucin domain 1 (TIM-1) and Axl receptor tyrosine kinase (Axl), are transmembrane proteins that can serve as entry factors for enveloped viruses. Previous studies used pseudoviruses to delineate the role of TIM-1 and Axl in CHIKV entry. Conversely, here, we use the authentic CHIKV and cells ectopically expressing TIM-1 or Axl and demonstrate a role for TIM-1 in CHIKV infection. To further characterize TIM-1-dependent CHIKV infection, we generated cells expressing domain mutants of TIM-1. We show that point mutations in the phosphatidylserine binding site of TIM-1 lead to reduced binding, entry, and infection of CHIKV. Ectopic expression of TIM-1 renders immortalized keratinocytes permissive to CHIKV, whereas silencing of endogenously expressed TIM-1 in human hepatoma cells reduces CHIKV infection. Altogether, our findings indicate that, unlike Axl, TIM-1 readily promotes the productive entry of authentic CHIKV into target cells.


Author(s):  
Magda Wiśniewska ◽  
Natalia Serwin ◽  
Violetta Dziedziejko ◽  
Małgorzata Marchelek-Myśliwiec ◽  
Barbara Dołęgowska ◽  
...  

Background/Aims: Renalase is an enzyme with monoamine oxidase activity that metabolizes catecholamines; therefore, it has a significant influence on arterial blood pressure regulation and the development of cardiovascular diseases. Renalase is mainly produced in the kidneys. Nephrectomy and hemodialysis (HD) may alter the production and metabolism of renalase. The aim of this study was to examine the effect of bilateral nephrectomy on renalase levels in the serum and erythrocytes of hemodialysis patients. Methods: This study included 27 hemodialysis patients post-bilateral nephrectomy, 46 hemodialysis patients without nephrectomy but with chronic kidney disease and anuria and 30 healthy subjects with normal kidney function. Renalase levels in the serum and erythrocytes were measured using an ELISA kit. Results: Serum concentrations of renalase were significantly higher in post-bilateral nephrectomy patients when compared with those of control subjects (101.1 ± 65.5 vs. 19.6 ± 5.0; p < 0.01). Additionally, renalase concentrations, calculated per gram of hemoglobin, were significantly higher in patients after bilateral nephrectomy in comparison with those of healthy subjects (994.9 ± 345.5 vs. 697.6 ± 273.4, p = 0.015). There were no statistically significant differences in plasma concentrations of noradrenaline or adrenaline. In contrast, the concentration of dopamine was significantly lower in post-nephrectomy patients when compared with those of healthy subjects (116.8 ± 147.7 vs. 440.9 ± 343.2, p < 0.01). Conclusions: Increased serum levels of renalase in post-bilateral nephrectomy hemodialysis patients are likely related to production in extra-renal organs as a result of changes in the cardiovascular system and hypertension.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 949
Author(s):  
Peiqi Yin ◽  
Margaret Kielian

Baby hamster kidney-21 (BHK-21) cells are widely used to propagate and study many animal viruses using infection and transfection techniques. Among various BHK-21 cell clones, the fibroblast-like BHK-21/C-13 line and the epithelial-like BHK-21/WI-2 line are commonly used cell clones for alphavirus research. Here we report that BHK-21/WI-2 cells were significantly less susceptible to primary infection by the alphavirus chikungunya virus (CHIKV) than were BHK-21/C-13 cells. The electroporation efficiency of alphavirus RNA into BHK-21/WI-2 was also lower than that of BHK-21/C-13. The growth of CHIKV was decreased in BHK-21/WI-2 compared to BHK-21/C-13, while primary infection and growth of the alphavirus Sindbis virus (SINV) were equivalent in the two cell lines. Our results suggested that CHIKV entry could be compromised in BHK-21/WI-2. Indeed, we found that the mRNA level of the CHIKV receptor MXRA8 in BHK-21/WI-2 cells was much lower than that in BHK-21/C-13 cells, and exogenous expression of either human MXRA8 or hamster MXRA8 rescued CHIKV infection. Our results affirm the importance of the MXRA8 receptor for CHIKV infection, and document differences in its expression in two clonal cell lines derived from the original BHK-21 cell cultures. Our results also indicate that CHIKV propagation and entry studies in BHK-21 cells will be significantly more efficient in BHK-21/C-13 than in BHK-21/WI-2 cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 6977
Author(s):  
Jens F. Rehfeld

The antral hormone gastrin potently regulates gastric acid secretion and fundic mucosal growth. Consequently, appropriate gastrin secretion and plasma concentrations are important for the early phases of digestion. This review describes as the first premise the normal biogenesis of gastrin in the antral mucosa, but also mentions the extraantral expression. Subsequently, the molecular nature and concentration levels of gastrin in serum or plasma are overviewed. Third, assays for accurate measurements of plasma or serum concentrations are commented. Finally, the problem of moderate hypergastrinemia due to Helicobacter pylori infections and/or treatment with proton-pump inhibitors (PPI) is discussed. The review concludes that accurate measurement of the true concentrations of bioactive gastrins in plasma is important. Moreover, it suggests that moderate hypergastrinemias are also essential health issues that require serious attention.


2021 ◽  
Vol 9 (5) ◽  
pp. 899
Author(s):  
Anthony Torres-Ruesta ◽  
Rhonda Sin-Ling Chee ◽  
Lisa F.P. Ng

Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii304-iii304
Author(s):  
Holly Lindsay ◽  
Arzu Onar-Thomas ◽  
Mehmet Kocak ◽  
Tina Young Poussaint ◽  
Girish Dhall ◽  
...  

Abstract BACKGROUND CD40 is a co-stimulatory molecule expressed on antigen presenting cells (APCs). APX005M is a CD40 agonist monoclonal antibody which stimulates innate and adaptive anti-tumor immunity through activation of APCs, macrophages, and antigen-specific CD8+T-cells. Pediatric Brain Tumor Consortium study PBTC-051 is the first investigation of APX005M in pediatric patients and is evaluating the safety, recommended phase 2 dose (RP2D), pharmacokinetics, and preliminary efficacy of APX005M in children with central nervous system (CNS) tumors. RESULTS Accrual of patients with recurrent/refractory primary malignant CNS tumors (stratum 1) began in March 2018. 16 patients (2 ineligible) have enrolled on this stratum; 14 were treated. Dose escalation through 3 planned dose levels of APX005M was completed without excessive or unanticipated toxicities. The highest dose level (0.6 mg/kg q3 weeks) is the presumptive RP2D, and an expansion cohort is currently enrolling at this dose. 2 patients at dose level 3 have received &gt;12 cycles of therapy. Grade 3 or higher adverse events at least possibly attributable to APX005M include 11 lymphopenia, 5 neutropenia, 5 leukopenia, 3 ALT elevations, 1 AST elevation, 1 thrombocytopenia, and 1 hypoalbuminemia. PK data will be available March 2020. Stratum 2 is now enrolling patients with post-radiation/pre-progression DIPG beginning at dose level 2, with 1 patient currently enrolled. CONCLUSION The CD40 agonistic antibody APX005M has demonstrated preliminary safety in pediatric patients with recurrent/refractory primary malignant CNS tumors and has a likely RP2D of 0.6 mg/kg q3 weeks in this population. Preliminary efficacy data are pending.


2021 ◽  
pp. 104868
Author(s):  
Xiaoqian Tang ◽  
Jing Cao ◽  
Jialin Zhang ◽  
Jing Xing ◽  
Xiuzhen Sheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document