scholarly journals Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired stool and colon sample

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Joan Mas-Lloret ◽  
Mireia Obón-Santacana ◽  
Gemma Ibáñez-Sanz ◽  
Elisabet Guinó ◽  
Miguel L. Pato ◽  
...  

AbstractThe gut microbiome has a fundamental role in human health and disease. However, studying the complex structure and function of the gut microbiome using next generation sequencing is challenging and prone to reproducibility problems. Here, we obtained cross-sectional colon biopsies and faecal samples from nine participants in our COLSCREEN study and sequenced them in high coverage using Illumina pair-end shotgun (for faecal samples) and IonTorrent 16S (for paired feces and colon biopsies) technologies. The metagenomes consisted of between 47 and 92 million reads per sample and the targeted sequencing covered more than 300 k reads per sample across seven hypervariable regions of the 16S gene. Our data is freely available and coupled with code for the presented metagenomic analysis using up-to-date bioinformatics algorithms. These results will add up to the informed insights into designing comprehensive microbiome analysis and also provide data for further testing for unambiguous gut microbiome analysis.

2019 ◽  
Author(s):  
Joan Mas-Lloret ◽  
Mireia Obón-Santacana ◽  
Gemma Ibáñez-Sanz ◽  
Elisabet Guinó ◽  
Miguel L Pato ◽  
...  

AbstractThe gut microbiome has a fundamental role in human health and disease. However, studying the complex structure and function of the gut microbiome using next generation sequencing is challenging and prone to reproducibility problems due to the heterogeneity of sample sets. Here, we obtained cross-sectional colon biopsies and faecal samples from nine participants in our COLSCREEN study and sequenced them in high coverage using Illumina pair-end shotgun (for faecal samples) and IonTorrent 16S (for paired feces and colon biopsies) technologies. The metagenomes consisted of between 47 and 92 million reads per sample and the targeted sequencing covered more than 300K reads per sample across seven hypervariable regions of the 16S gene. Our data is freely available and coupled with code for the presented metagenomic analysis using up-to-date bioinformatics algorithms. These results will add up to the informed insights into designing comprehensive microbiome analysis and also provide data for further testing for unambiguous gut microbiome analysis.


2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

ABSTRACTAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by theN-acylation of the amino acid, and this is followed by subsequentO-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes anN-acyltransferase activity responsible for the production of a monoacylated glycine calledN-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes sequenced so far, theglsBgene is located immediately downstream from a gene, namedglsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicron, and we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacteriumB. thetaiotaomicron.IMPORTANCEThe gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from theBacteroidales, an order that includesBacteroidesandPrevotella. In this study, we have identified an acylated amino acid, called glycine lipid, produced byBacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation ofB. thetaiotaomicronto a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut byB. thetaiotaomicron. This work identifies glycine lipids as an important fitness determinant inB. thetaiotaomicronand therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


2022 ◽  
Vol 8 ◽  
Author(s):  
Shuangyue Li ◽  
Georgios Kararigas

There has been a recent, unprecedented interest in the role of gut microbiota in host health and disease. Technological advances have dramatically expanded our knowledge of the gut microbiome. Increasing evidence has indicated a strong link between gut microbiota and the development of cardiovascular diseases (CVD). In the present article, we discuss the contribution of gut microbiota in the development and progression of CVD. We further discuss how the gut microbiome may differ between the sexes and how it may be influenced by sex hormones. We put forward that regulation of microbial composition and function by sex might lead to sex-biased disease susceptibility, thereby offering a mechanistic insight into sex differences in CVD. A better understanding of this could identify novel targets, ultimately contributing to the development of innovative preventive, diagnostic and therapeutic strategies for men and women.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3292
Author(s):  
Mariona Pinart ◽  
Katharina Nimptsch ◽  
Sofia K. Forslund ◽  
Kristina Schlicht ◽  
Miguel Gueimonde ◽  
...  

In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3–V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease.


2014 ◽  
Vol 94 (1) ◽  
pp. 141-188 ◽  
Author(s):  
Carlo Sala ◽  
Menahem Segal

The introduction of high-resolution time lapse imaging and molecular biological tools has changed dramatically the rate of progress towards the understanding of the complex structure-function relations in synapses of central spiny neurons. Standing issues, including the sequence of molecular and structural processes leading to formation, morphological change, and longevity of dendritic spines, as well as the functions of dendritic spines in neurological/psychiatric diseases are being addressed in a growing number of recent studies. There are still unsettled issues with respect to spine formation and plasticity: Are spines formed first, followed by synapse formation, or are synapses formed first, followed by emergence of a spine? What are the immediate and long-lasting changes in spine properties following exposure to plasticity-producing stimulation? Is spine volume/shape indicative of its function? These and other issues are addressed in this review, which highlights the complexity of molecular pathways involved in regulation of spine structure and function, and which contributes to the understanding of central synaptic interactions in health and disease.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1553
Author(s):  
Xiaozhe Wang ◽  
Ying Zhang ◽  
Qiong Wen ◽  
Ying Wang ◽  
Zhixin Wang ◽  
...  

The gut microbiome plays an important role in the health and disease status of the host. Research on the effect of sex on animal intestinal microorganisms is still limited; and the effect of castration on the gut microbiome of male pigs has not been fully investigated. In this study, 30 Hainan special wild boars at the same growth stage were divided into three groups (10 entire males, 10 females, and 10 castrated males). High-throughput 16S rRNA sequencing was used to investigate the fecal microbiota of the Hainan special wild boar. Firmicutes, Bacteroidetes, Actinobacteria, Spirochaetes, and Proteobacteria were the five dominant phyla found in the specimens. The relative abundance of Bacteroidetes was higher in the microbiota of female pigs than in male pigs, while Firmicutes was on the contrary. The percentage of Streptococcus and Lactobacillus was higher in males than females. The microbial diversity of females was significantly higher compared to males; castration increased the intestinal microbial diversity of males. Functional prediction showed that male fecal microorganisms were rich in membrane transport and carbohydrate metabolism; energy metabolism, glycan biosynthesis, and metabolism of cofactors and vitamins were rich in the female group; the fecal microorganisms of castrated males had higher membrane transport abundance.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 300
Author(s):  
Eric Banan-Mwine Daliri ◽  
Fred Kwame Ofosu ◽  
Ramachandran Chelliah ◽  
Byong H. Lee ◽  
Deog-Hwan Oh

The advent of omic technology has made it possible to identify viable but unculturable micro-organisms in the gut. Therefore, application of multi-omic technologies in gut microbiome studies has become invaluable for unveiling a comprehensive interaction between these commensals in health and disease. Meanwhile, despite the successful identification of many microbial and host–microbial cometabolites that have been reported so far, it remains difficult to clearly identify the origin and function of some proteins and metabolites that are detected in gut samples. However, the application of single omic techniques for studying the gut microbiome comes with its own challenges which may be overcome if a number of different omics techniques are combined. In this review, we discuss our current knowledge about multi-omic techniques, their challenges and future perspective in this field of gut microbiome studies.


2020 ◽  
Author(s):  
Kathy N. Lam ◽  
Peter Spanogiannopoulos ◽  
Paola Soto-Perez ◽  
Margaret Alexander ◽  
Matthew J. Nalley ◽  
...  

AbstractThe recognition that the gut microbiome has a profound influence on human health and disease has spurred efforts to manipulate gut microbial community structure and function. Though various strategies for microbiome engineering have been proposed, methods for phage-based genetic manipulation of resident members of the gut microbiota in vivo are currently lacking. Here, we show that bacteriophage can be used as a vector for delivery of plasmid DNA to bacteria colonizing the gastrointestinal tract, using filamentous phage M13 and Escherichia coli engrafted in the gut microbiota of mice. We employ M13 to deliver CRISPR-Cas9 for sequence-specific targeting of E. coli leading to depletion of one strain of a pair of fluorescently marked isogenic strains competitively colonizing the gut. We further show that when mice are colonized by a single E. coli strain, it is possible for M13-delivered CRISPR-Cas9 to induce genomic deletions that encompass the targeted gene. Our results suggest that rather than being developed for use as an antimicrobial in the gut microbiome, M13-delivered CRISPR-Cas9 may be better suited for targeted genomic deletions in vivo that harness the robust DNA repair response of bacteria. With improved methods to mitigate undesired escape mutations, we envision these strategies may be developed for targeted removal of strains or genes present in the gut microbiome that are detrimental to the host. These results provide a highly adaptable platform for in vivo microbiome engineering using phage and a proof-of-concept for the establishment of phage-based tools for a broader panel of human gut bacteria.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Sign in / Sign up

Export Citation Format

Share Document