scholarly journals Cardiosphere-derived cells suppress allogeneic lymphocytes by production of PGE2 acting via the EP4 receptor

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Luke C. Dutton ◽  
Jayesh Dudhia ◽  
Brian Catchpole ◽  
Hannah Hodgkiss-Geere ◽  
Dirk Werling ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4297
Author(s):  
Matthew Thomas Ferreira ◽  
Juliano Andreoli Miyake ◽  
Renata Nascimento Gomes ◽  
Fábio Feitoza ◽  
Pollyana Bulgarelli Stevannato ◽  
...  

Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aleksandra Majchrzak-Celińska ◽  
Julia O. Misiorek ◽  
Nastassia Kruhlenia ◽  
Lukasz Przybyl ◽  
Robert Kleszcz ◽  
...  

Abstract Background Glioblastoma (GBM) is the deadliest and the most common primary brain tumor in adults. The invasiveness and proliferation of GBM cells can be decreased through the inhibition of Wnt/β-catenin pathway. In this regard, celecoxib is a promising agent, but other COXIBs and 2,5-dimethylcelecoxib (2,5-DMC) await elucidation. Thus, the aim of this study was to analyze the impact of celecoxib, 2,5-DMC, etori-, rofe-, and valdecoxib on GBM cell viability and the activity of Wnt/β-catenin pathway. In addition, the combination of the compounds with temozolomide (TMZ) was also evaluated. Cell cycle distribution and apoptosis, MGMT methylation level, COX-2 and PGE2 EP4 protein levels were also determined in order to better understand the molecular mechanisms exerted by these compounds and to find out which of them can serve best in GBM therapy. Methods Celecoxib, 2,5-DMC, etori-, rofe- and valdecoxib were evaluated using three commercially available and two patient-derived GBM cell lines. Cell viability was analyzed using MTT assay, whereas alterations in MGMT methylation level were determined using MS-HRM method. The impact of COXIBs, in the presence and absence of TMZ, on Wnt pathway was measured on the basis of the expression of β-catenin target genes. Cell cycle distribution and apoptosis analysis were performed using flow cytometry. COX-2 and PGE2 EP4 receptor expression were evaluated using Western blot analysis. Results Wnt/β-catenin pathway was attenuated by COXIBs and 2,5-DMC irrespective of the COX-2 expression profile of the treated cells, their MGMT methylation status, or radio/chemoresistance. Celecoxib and 2,5-DMC were the most cytotoxic. Cell cycle distribution was altered, and apoptosis was induced after the treatment with celecoxib, 2,5-DMC, etori- and valdecoxib in T98G cell line. COXIBs and 2,5-DMC did not influence MGMT methylation status, but inhibited COX-2/PGE2/EP4 pathway. Conclusions Not only celecoxib, but also 2,5-DMC, etori-, rofe- and valdecoxib should be further investigated as potential good anti-GBM therapeutics.


Author(s):  
Nobuhiro Nishigaki ◽  
Chang-sheng Chang ◽  
Atsushi Ichikawa ◽  
Manabu Negishi

Cartilage ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Satomi Abe ◽  
Hitoshi Nochi ◽  
Hiroshi Ito

Introduction We previously showed that articular chondrocytes (ACs) have immune privilege and immunomodulatory functions like those of mesenchymal stem cells. To elucidate these mechanisms, we focused on interleukin-2 (IL-2), which plays critical roles in lymphocyte mitogenic activity. The purpose of this study was to explore whether ACs affect the role of IL-2 underlying immunomodulatory functions. Material and Methods Irradiated human ACs from osteoarthritis donors were used. Third-party ACs were added to the mixed lymphocyte reaction (MLR) with or without recombinant human IL-2 (rhIL-2), and the levels of IL-2 and the soluble form of the IL-2 receptor α (sIL-2Rα) protein in supernatant were measured by enzyme-linked immunosorbent assay. Recombinant human IL-2 (rhIL-2) was also added to the MLR. To detect the expression of IL-2 receptor α (CD25) on lymphocytes in the MLR, flow cytometric analysis was performed. Last, ACs and allogeneic activated CD4+ T cell were co-cultured, and the expression of CD25 on activated T cells was examined by flow cytometry. Results Third-party ACs significantly inhibited the MLR and reduced the level of sIL-2Rα in a dose-dependent manner, but did not affect the concentration of IL-2. Exogenous rhIL-2 accelerated MLR but did not rescue the inhibitory effect of ACs. ACs inhibited the expression of CD25 on activated CD4+ T cells. Discussion Our results showed that third-party ACs inhibited the proliferation of allogeneic activated lymphocytes, thereby inhibiting production sIL-2Rα, although ACs did not affect IL-2 secretion from lymphocytes. Also, ACs inhibited CD25 expression on activated CD4+ T cells. Thus, ACs inhibited the immune response of allogeneic lymphocytes by inducing IL-2 nonresponsiveness.


2005 ◽  
Vol 21 (4) ◽  
pp. 565-575 ◽  
Author(s):  
Hua Zhu Ke ◽  
D Todd Crawford ◽  
Hong Qi ◽  
Hollis A Simmons ◽  
Thomas A Owen ◽  
...  

2015 ◽  
Vol 290 (50) ◽  
pp. 29781-29793 ◽  
Author(s):  
Masaki Inada ◽  
Morichika Takita ◽  
Satoshi Yokoyama ◽  
Kenta Watanabe ◽  
Tsukasa Tominari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document