scholarly journals Mutagen-induced phytotoxicity in maize seed germination is dependent on ROS scavenging capacity

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yifei Zhang ◽  
Haojie Shi ◽  
Benliang Deng
Agrologia ◽  
2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Stela Wusono ◽  
John M Matinahoru ◽  
CMA Watimena

Swietenia mahagoni is a timber forestry plants have allelopathy toxic, can interfere with the growth of surrounding plants. This study aimed to determine the effects of extracts from various parts of Swietenia mahagoni on seed germination of green beans and corn. This research was conducted at the Laboratory of Silviculture, an extract from a litter, fresh leaves, bark and roots of the Swietenia mahagoni plant and given to the seed germination green beans and corn. The results showed that the extract of fresh leaves and roots Swietenia mahagoni inhibit seed germination green beans and corn, while the provision of litter no effect. Green bean seed has a higher durability of the maize seed to allelopathy of root Swietenia mahagoni.


2021 ◽  
Vol 281 ◽  
pp. 111878
Author(s):  
Lucas Raimundo Bento ◽  
Riccardo Spaccini ◽  
Silvana Cangemi ◽  
Pierluigi Mazzei ◽  
Bianca Borge de Freitas ◽  
...  

2021 ◽  
Author(s):  
Aiju Meng ◽  
Daxing Wen ◽  
Chunqing Zhang

Spring maize is usually subjected to low-temperature stress during seed germination, which retards seedling growth even if under a suitable temperature. However, the mechanism underlying maize seed germination under low-temperature stress modulating seedling growth after being transferred to normal temperature is still ambiguous. In this study, we used two maize inbred lines with different low-temperature resistance (SM and RM) to investigate the mechanism. The results showed that the SM line had higher lipid peroxidation and lower total antioxidant capacity and germination percentage than the RM line under low-temperature stress, which indicated that the SM line was more vulnerable to low-temperature stress. Further transcriptome analysis revealed that seed germination under low-temperature stress caused down-regulation of photosynthesis related gene ontology (GO) terms in two lines. Moreover, the SM line displayed down-regulation of ribosome and superoxide dismutase (SOD) related genes, whereas genes involved in SOD and vitamin B6 were up-regulated in the RM line. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that photosynthesis and antioxidant metabolism related pathways played important roles in seed germination in response to low-temperature stress, and the photosynthetic system displayed a higher damage degree in the SM line. Both qRT-PCR and physiological characteristics experiments showed similar results with transcriptome data. Taken together, we propose a model for maize seed germination in response to low-temperature stress.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Jianjun Wen ◽  
Craig Porter ◽  
David Herndon ◽  
Nisha J Garg

Background: We observed that mitochondrial reactive oxygen species (mtROS) plays very important roles in the pregression of chagesic disease (CD). In this study, we utilized genetically-modified mice to scavenge mtROS to investigate the impact of improved ROS scavenging capacity on heart function in CD. Methods and Results: C57BL/6 mice (wild-type, MnSODtg, MnSOD+/-) were infected with Trypanosoma cruzi(Tc). Chronically infected mice (≥120dpi) exhibited a substantial decrease in heart tissue MnSOD gene expression, protein level, enzyme activity and antioxidant level; decrease of heart dysfunction via lower of SV, CO, EF, FS and LVPW,s, and increase of ESV/EDS and LVID;s; enhancement of hypertrophy by increase of IVS, LV mass and areas duo to augmentation of collagen expressions. One of our novel observations was that sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) lost its role of maintenance of low cytoplasm free calcium and mediated calcium uptake to intracellular store in Tc-induced chronic chagasic disease. Studies of fresh heart slices using O2K confirmed that Tc diminished heart mitochondrial function like decrease of oxygen flux and respiratory control ratio (RCR), which were caused by enhancements of ROS. Myocardial mitochondrial damage was pronounced and associated with a >x% decline in mitochondrial oxygen flux in chronically infected wild-type and MnSOD transgenic mice. Imaging of intact heart for cardiomyocytes and collagen by the nonlinear optical microscopy techniques showed significant increase in collagen (>x0-fold) in chronically infected wild-type mice; while MnSODtg mice exhibited a basal increase in collagen that did not change during chronic phase. Chronically infected MnSODtg mice exhibited a marginal decline in Tc-induced heart function, heart hypertrophy, mitochondrial dysfunction Conclusions: Overexpression of MnSOD inhibited Tc-induced oxidative damage od heart tissue. , suggesting that enhancing the mitochondrial ROS scavenging capacity was beneficial in controlling the inflammatory and oxidative pathology, and cardiac remodeling responses that are hallmarks of chronic Chagas disease.


2016 ◽  
Vol 10 (4) ◽  
pp. 171-177 ◽  
Author(s):  
Gopalu Karunakaran ◽  
Rangaraj Suriyaprabha ◽  
Venkatachalam Rajendran ◽  
Narayanasamy Kannan

2018 ◽  
Author(s):  
Peter Peterson ◽  
Clifford J. Whatcott ◽  
David J. Bearss ◽  
Steven L. Warner ◽  
Adam Siddiqui-Jain

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1647 ◽  
Author(s):  
Xiaoyan Zhang ◽  
Yihan Ma ◽  
Sheng Fu ◽  
Aiqing Zhang

Rational design and modification of the all-carbon fullerene cages to meliorate their nature of hydrophobicity is critical for biomedical applications. The outstanding electron affinity of fullerenes enables them to effectively eliminate reactive oxygen species (ROS), the excess of which may lead to health hazards or biological dysfunction. Herein reported is a facile, mild, and green approach to synthesizing the favorable water-soluble C60 nanoparticles capable of ROS-scavenging by combining the mussel-inspired chemistry with the Michael addition reaction. Various characterization techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectra (XPS), thermogravimetric analysis (TGA), transmission electron cryomicroscopy (Cryo-TEM), and dynamic laser scattering (DLS) were carried out to confirm the satisfactory preparation of the hybrid C60-PDA-GSH nanoparticles, which exhibited apparent scavenging capacity of DPPH and hydroxyl radicals in vitro. Additionally, the biocompatible C60-PDA-GSH nanoparticles entered into cells and displayed a universal cytoprotective effect against oxidative press induced by H2O2 in four kinds of human cells at a low concentration of 2 μg/mL. The ease and versatility of the strategy present in this work will not only trigger more fullerene-based materials by the immobilization of diverse functional molecules, but will also extend their possible applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 240 ◽  
Author(s):  
Keiko Kobayashi ◽  
Yanchen Liu ◽  
Hiroshi Ichikawa ◽  
Shigekazu Takemura ◽  
Yukiko Minamiyama

We investigated the effect of bisphenol A (BPA) on oxidative stress and tau-related proteins in adult rat brains. BPA (10 mg/L) was administered to rats for eight weeks through their drinking water. The reactive oxygen species (ROS) scavenging capacity for hydroxyl radicals in the plasma was reduced after two weeks. In the hippocampus, four and eight weeks of BPA increased the ratio of oxidized DJ-1/DJ-1 (PARK7). The ratio of phosphorylated-GSK3β/GSK3β and phosphorylated-AKT/AKT increased after one week of BPA treatment. The ratio of phosphorylated JNK/JNK and phosphorylated-ERK/ERK increased after eight weeks of BPA; the elevation could be related to tau phosphorylation. Protein phosphatase 2A (PP2A) in the hippocampus decreased after eight weeks of BPA treatment. At that time, SOD1 was significantly induced, but no changes in SOD2 expression were apparent in the hippocampus. Furthermore, the ratio of phosphorylated-tau (PHF-1, Ser396/ Ser404) to total tau level did not change. However, PHF-1 or other sites of tau could be phosphorylated after eight weeks in the hippocampi of rats. BPA induced systemic oxidative stress and could change ROS-induced signaling pathways in the brain. These results suggest that mitochondrial dysfunction possibly is not responsible for oxidative stress and neurodegeneration due to low doses of BPA.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39578 ◽  
Author(s):  
Dong Ding ◽  
Yinju Wang ◽  
Mingshui Han ◽  
Zhiyuan Fu ◽  
Weihua Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document