scholarly journals Monensin inhibits cell proliferation and tumor growth of chemo-resistant pancreatic cancer cells by targeting the EGFR signaling pathway

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Wang ◽  
Xingye Wu ◽  
Zhonglin Zhang ◽  
Chao Ma ◽  
Tingting Wu ◽  
...  
2018 ◽  
Vol 47 (3) ◽  
pp. 1007-1024 ◽  
Author(s):  
Yi-Gang Qian ◽  
Zhou Ye ◽  
Hai-Yong Chen ◽  
Zhen Lv ◽  
Ai-Bin Zhang ◽  
...  

Background/Aims: Pancreatic cancer is an aggressive malignancy as a result of highly metastatic potential. The current study was carried out to alter the expression of LINC01121 in pancreatic cancer, with the aim of elucidating its effects on the biological processes of cell proliferation, migration, invasion, and apoptosis. We hypothesized that both the GLP1R gene and cAMP/PKA signaling pathway participate in the aforementioned process. Methods: Microarray data (GSE14245, GSE27890 and GSE16515) and annotating probe files linked to pancreatic cancer were downloaded through the GEO database. The Multi Experiment Matrix (MEM) site was used to predict the target gene of lncRNA. Both pancreatic cancer tissues (n = 56) and paracancerous tissues (n = 45) were collected from patients diagnosed with pancreatic cancer. Immunohistochemistry was applied to identify the positive expression rate of GLP1R protein. Isolated pancreatic cancer cells and PANC-1 cells were independently classified into the blank, negative control (NC), LINC01121 vector, siRNA-LINC01121, siRNA-GLP1R and siRNA-LINC01121 + siRNA-GLP1R groups. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were applied to detect the expressions of LINC01121, GLP1R, cAMP, PKA, CREB, Bcl-2, Bad and PCNA. Cell proliferation, migration, invasion, cycle progression, and apoptosis were examined by MTT assay, scratch test, Transwell assay and flow cytometry analyses of Annexin V-FITC/PI staining. Results: Observations were made indicating that LINC01121 was highly expressed, while low expressions of GLP1R in pancreatic cancer were detected based on microarray data, which was largely in consistent with the data collected of LINC01121 and GLP1R within the tissues. The target prediction program and luciferase activity analysis was testament to the notion suggesting that GLP1R was indeed a target of LINC01121. In contrast to the blank and NC groups, the LINC01121 vector group exhibited increased expressions of LINC01121; decreased mRNA and protein levels of GLP1R, Bad, cAMP, and PKA; increased protein levels of CREB, Bcl-2, PCNA, p-PKA and p-CREB; increased cell proliferation, migration and invasion; and decreased cell apoptosis. There was no significant difference detected among the blank, NC, and siRNA-LINC01121 + siRNA-GLP1R groups, except that decreased LINC01121 expression was determined in the siRNA-LINC01121 + siRNA-GLP1R group. Parallel data were observed in the pancreatic cancer cells and PANC-1 cells. Conclusion: The current study presents evidence indicating that LINC01121 might inhibit apoptosis while acting to promote proliferation, migration, and invasion of pancreatic cancer cells, supplementing the stance held that LINC01121 functions as a tumor promoter by means of its involvement in the process of translational repression of the GLP1R and inhibition of the cAMP/PKA signaling pathway.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yueqin Feng ◽  
Yuguan Jiang ◽  
Fengjin Hao

Abstract Background Pancreatic cancer is one of the most serious digestive malignancies. At present, there is an extreme lack of effective strategies in clinical treatment. The purpose of this study is to identify key genes and pathways in the development of pancreatic cancer and provide targets for the treatment of pancreatic cancer. Methods GSE15471 and GSE62165 were used to screen differentially expressed genes by GEO2R tool. Hub genes prognostic potential assessed using the GEPIA and Kaplan–Meier plotter databases. The drug susceptibility data of pan-cancer cell lines is provided by The Genomics of Drug Sensitivity in Cancer Project (GDSC). Finally, the effects of PI3K–Akt signaling pathway inhibitors on cell viability of pancreatic cancer cells were detected by cell proliferation and invasion assays. Results A total of 609 differentially expressed genes were screened and enriched in the focal adhesion, phagosome and PI3K–Akt signaling pathway. Of the 15 hub genes we found, four were primarily associated with the PI3K–Akt signaling pathway, including COL3A1, EGF, FN1 and ITGA2. GDSC analysis showed that mTOR inhibitors are very sensitive to pancreatic cancer cells with mutations in EWSR1.FLI1 and RNF43. Cell proliferation and invasion results showed that mTOR inhibitors (GSK2126458) can inhibit the proliferation of pancreatic cancer cells. Conclusions This study suggested that the PI3K–Akt signaling pathway may be a key pathway for pancreatic cancer, our study uncovered the potential therapeutic potential of GSK2126458, a specific mTOR inhibitor, for pancreatic cancer.


Human Cell ◽  
2020 ◽  
Vol 33 (4) ◽  
pp. 1186-1196
Author(s):  
Yang Liu ◽  
Peng Qin ◽  
Rong Wu ◽  
Lianfang Du ◽  
Fan Li

Abstract Pancreatic cancer is the fourth most common lethal malignancy with an overall 5-year survival rate of less than 5%. ERas, a novel Ras family member, was first identified in murine embryonic stem cells and is upregulated in various cancers. However, the expression and potential role of ERas in pancreatic cancer have not been investigated. In this study, we found that ERas mRNA and protein were upregulated in pancreatic cancer tissues and cells compared with controls. Knockdown of ERas in pancreatic cancer cells by siRNA significantly decreased cell proliferation, colony formation, migration, and invasion and promoted cell apoptosis in vitro. Epithelial–mesenchymal transition (EMT) is closely related to tumor progression. We observed a significant decrease in N-cadherin expression in pancreatic cancer cells in response to ERas gene silencing by immunofluorescence assay and western blot. Furthermore, tumor growth and EMT were inhibited in xenografts derived from pancreatic cancer cells with ERas downregulation. We further investigated the regulatory mechanisms of ERas in pancreatic cancer and found that ERas may activate the Erk/Akt signaling pathway. Moreover, Erk inhibitor decreased pancreatic cancer cells proliferation and colony formation activities. Our data suggest that targeting ERas and its relevant signaling pathways might represent a novel therapeutic approach for the treatment of pancreatic cancer.


Author(s):  
Li-Chao Yao ◽  
Lun Wu ◽  
Wei Wang ◽  
Lu-Lu Zhai ◽  
Lin Ye ◽  
...  

Background:: Panax Notoginseng Saponins (PNS) is used as traditional Chinese medicine for ischemic stroke and cardiovascular disease, it has been proven to possess anticancer activity recently. Objective:: In this study, we aimed to explore the anticancer curative effect and potential mechanisms of PNS in pancreatic cancer cells. Methods:: Pancreatic cancer Miapaca2 and PANC-1 cells were treated with PNS and Gemcitabine (Gem), respectively. Then the cell viability was assessed by CCK-8 assay, cell proliferation was tested by colony formation assay and EdU cell proliferation assay, cell migration and invasiveness were tested by wound healing assay and transwell assay respectively, and cell apoptosis was detected by flow cytometry. Finally, we detected the expression levels of proteins related to migration, apoptosis and autophagy through Western blotting. Results:: PNS not only inhibited the proliferation, migration, invasion and autophagy of Miapaca2 and PANC-1 cells, but also induced apoptosis and promoted chemosensitivity of pancreatic cancer cells to Gem. Conclusion:: PNS may exhibit cytotoxicity and increase chemosensitivity of pancreatic cancer cells to Gem by inhibiting autophagy and inducing apoptosis, providing a new strategy and potential treatment option for pancreatic cancer.


2018 ◽  
Vol 65 (5) ◽  
pp. 665-671 ◽  
Author(s):  
Jinhui Zhu ◽  
Yan Chen ◽  
Yun Ji ◽  
Yuanquan Yu ◽  
Yun Jin ◽  
...  

2019 ◽  
Vol 19 (5) ◽  
pp. 417-427 ◽  
Author(s):  
Xiang Chen ◽  
Jilai Tian ◽  
Gloria H. Su ◽  
Jiayuh Lin

Background:Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance.Objective:We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer.Methods:The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay.Results:We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells.Conclusion:Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document