scholarly journals Changes in motor behavior, neuropathology, and gut microbiota of a Batten disease mouse model following administration of acidified drinking water

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tyler B. Johnson ◽  
Logan M. Langin ◽  
Jing Zhao ◽  
Jill M. Weimer ◽  
David A. Pearce ◽  
...  

Abstract CLN3 mutations cause the fatal neurodegenerative disorder, CLN3 Batten disease. The Cln3−/− mouse model displays characteristic features of the human disease including motor deficits. When mice received acidified drinking water (pH 2.5–2.9) instead of normal tap water (pH 8.4) for several generations, the motor skills of Cln3−/− mice normalized to control levels, indicating a disease-modifying effect of acidified water. Here we investigated if acidified water administered from postnatal day 21 has therapeutic benefits in Cln3−/− mice. Indeed, acidified water temporarily attenuated the motor deficits, had beneficial effects on behavioral parameters and prevented microglial activation in the brain of Cln3−/− mice. Interestingly, in control mice, acidified drinking water caused brain region-specific glial activation and significant changes in motor performance. Since the gut microbiota can influence neurological functions, we examined it in our disease model and found that the gut microbiota of Cln3−/− mice was markedly different from control mice, and acidified water differentially changed the gut microbiota composition in these mice. These results indicate that acidified water may provide therapeutic benefit to CLN3 Batten disease patients, and that the pH of drinking water is a major environmental factor that strongly influences the results of murine behavioral and pathological studies.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brandon Whipple ◽  
Jennifer Agar ◽  
Jing Zhao ◽  
David A. Pearce ◽  
Attila D. Kovács

AbstractAcidification of drinking water to a pH between 2.5 and 3.0 is widely used to prevent the spread of bacterial diseases in animal colonies. Besides hydrochloric acid (HCl), sulfuric acid (H2SO4) is also used to acidify drinking water. Here we examined the effects of H2SO4-acidified drinking water (pH = 2.8) received from weaning (postnatal day 21) on the behavior and gut microflora of 129S6/SvEv mice, a mouse strain commonly used in transgenic studies. In contrast to HCl-acidified water, H2SO4-acidified water only temporarily impaired the pole-descending ability of mice (at 3 months of age), and did not change the performance in an accelerating rotarod test. As compared to 129S6/SvEv mice receiving non-acidified or HCl-acidified drinking water, the gut microbiota of 129S6/SvEv mice on H2SO4-acidified water displayed significant alterations at every taxonomic level especially at 6 months of age. Our results demonstrate that the effects of acidified drinking water on the behavior and gut microbiota of 129S6/SvEv mice depends on the acid used for acidification. To shed some light on how acidified drinking water affects the physiology of 129S6/SvEv mice, we analyzed the serum and fecal metabolomes and found remarkable, acidified water-induced alterations.


2013 ◽  
Vol 13 (5) ◽  
pp. 1257-1264 ◽  
Author(s):  
F. Q. Huang ◽  
M. Y. Ruan ◽  
J. D. Yan ◽  
H. C. Hong ◽  
H. J. Lin ◽  
...  

Halonitromethanes (HNMs) in drinking water are increasingly becoming a public concern due to their high health risks, so development of a sensitive method for their analysis has become a priority. Liquid–liquid extraction (LLE) method is dominantly used in current studies regarding HNMs. However the sensitivity is far from ideal. The present study aims to investigate the factors that may influence the extraction efficiency during HNM analysis by LLE method, and as a result develop a more sensitive extraction method for HNM determination. Results showed that the dose of sodium sulfate exerted the most significant influence, followed by copper sulfate, while the pH and manual shaking times have little effect. Under the suitable conditions (for extracting HNMs in 45 mL water: pH = 3.5–5, CuSO4 = 1.0 g, Na2SO4 = 6 g, shaking times = 120–180), the correlation coefficients (r) of the calibration curves for nine HNMs were all more than 0.9925. The method detection limit (MDL) ranged from 0.017 to 0.217 μg L−1 with an average of 0.076 μg L−1, which was dominantly lower than the method reported. The recovery (spiked blank samples: 98–108%; spiked tap water: 81–120%) and precision (relative standard deviation: 0.46–6.72) also showed good reliability and reproducibility of the method. Finally, the developed method was applied to the determination of HNMs in real water samples.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Katherine A. White ◽  
Jacob T. Cain ◽  
Helen Magee ◽  
Seul Ki Yeon ◽  
Ki Duk Park ◽  
...  

Abstract CLN6-Batten disease is a rare neurodegenerative disorder with no cure, characterized by accumulation of lipofuscin in the lysosome, glial activation, and neuronal death. Here we test the therapeutic efficacy of modulating collapsin response mediator protein 2 (CRMP2) activity via S-N-benzy-2-acetamido-3-methoxypropionamide ((S)-Lacosamide) in a mouse model of CLN6-Batten disease. Promisingly, mouse neuronal cultures as well as Cln6 patient fibroblasts treated with varying concentrations of (S)-Lacosamide showed positive restoration of lysosomal associated deficits. However, while acute in vivo treatment enhanced glial activation in 3-month-old Cln6 mutant mice, chronic treatment over several months did not improve behavioral or long-term survival outcomes. Therefore, modulation of CRMP2 activity via (S)-Lacosamide alone is unlikely to be a viable therapeutic target for CLN6-Batten disease.


Author(s):  
Kun Zhou ◽  
Weili Liu ◽  
Zhaoli Chen ◽  
Dong Yang ◽  
Zhigang Qiu ◽  
...  

Abstract The human gut harbors trillions of microbes, which are extremely important to the health of the host. However, the effect of drinking water on gut microbiota has been poorly understood. In this study, we explored the response of BALB/c mice gut bacterial community (feces) to the different types of drinking water, including commercial bottled mineral water (MW), natural water (NW), purified water (PW) and tap water (TW). Feces were cultured with Brain Heart Infusion Broth dissolved in four types of drinking water. 16S rRNA gene analysis was performed. Our results reveal that the microbiota composition is different among culturing with four types of drinking water. As the culture time increases, the number of OTUs significantly decreased, except under the aerobic condition of MW. Under aerobic conditions on the 5th day, the considerable differences of alpha diversity index are found between MW and three others, and there are the most unique taxa in MW group. Importantly, the LEfSe analysis discovers that the Bacteroidetes taxa dominate the differences between MW and the other water types. Our findings demonstrate that the mineral water as a culture medium may lead to a progressive increase of the gut microbiota diversity by providing the growth convenience to Bacteroidetes.


2008 ◽  
Vol 14 (4) ◽  
pp. 335-341
Author(s):  
Darren A. Lytle ◽  
Colin White ◽  
Michael R. Schock

Polyphosphates are used in drinking water to prevent the precipitation of cations such as calcium and iron. The possible negative impact of using polyphosphates is the undesirable complexation of lead that could result in elevated lead levels in consumers' tap water. Although the water industry has focused on complexation, lead polyphosphate solids such as lead pyrophosphate, Pb2P2O7, have been considered in other fields and not been shown to form in water. The ability to form lead pyrophosphate in water could have a potential impact on the strategies used to reduce lead levels in drinking water distribution systems. The objective of this work was to determine whether lead pyrophosphate could form under simulated potable drinking water conditions. Lead pyrophosphate was synthesized in water (pH 8.2, 10 mg C/L, 2.7 mg Cl2/L) after 13 days of aging. The formation of lead pyrophosphate was confirmed by X-ray diffraction and microscopy analysis. Synthesis did not require elevated temperatures or microwave assisted approaches used by past researchers. The findings suggest that lead (and possibly other metal) pyrophosphates could conceivably form in real drinking water systems, although much more work is necessary to determine the chemistry and kinetic boundaries.


Author(s):  
Carol A. Murphy ◽  
Neil E. Paterson ◽  
Angela Chen ◽  
Washington Arias ◽  
Dansha He ◽  
...  

The neurodegenerative disorder Huntington’s disease (HD) is characterized by motor dysfunction, cognitive impairment and psychiatric symptoms. The R6/2 (120 CAG repeats) mouse model of HD recapitulates many of the symptoms of the disease, including marked impairments in cognition and severe motor deficits. As cholinergic function has been reported to be affected in both HD patients and this mouse model, we tested whether treatment with the cholinesterase inhibitor donepezil could improve the R6/2 mice performance in the two-choice swim tank visual discrimination and reversal task. In this test mice are trained to swim towards a light cued platform located on one side of a water-filled tank. Once mice reach an acquisition criterion a reversal ensues. Wild-type and R6/2 mice were dosed with donepezil (0.6 mg/kg/day) or vehicle starting at 8 weeks of age and tested starting at 9 weeks of age. In experiment 1, vehicle-treated R6/2 mice showed a significant deficit during acquisition and reversal as compared to vehicle-treated WT mice. Donepezil improved reversal in the R6/2 group. In experiment 2, we confirmed the beneficial effect of donepezil on reversal in similar conditions. Donepezil had no effect on activity as measured in the open field test or through the latency to reach the platform during the swim test. We suggest that the donepezil-induced improvements in cognitive function observed in the R6/2 transgenic model of HD may reflect amelioration of deficits in cholinergic function that have been reported previously in this model. Further work is required to confirm the findings of these interesting although preliminary studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah-Anna Hescham ◽  
Po-Han Chiang ◽  
Danijela Gregurec ◽  
Junsang Moon ◽  
Michael G. Christiansen ◽  
...  

AbstractDeep brain stimulation (DBS) has long been used to alleviate symptoms in patients suffering from psychiatric and neurological disorders through stereotactically implanted electrodes that deliver current to subcortical structures via wired pacemakers. The application of DBS to modulate neural circuits is, however, hampered by its mechanical invasiveness and the use of chronically implanted leads, which poses a risk for hardware failure, hemorrhage, and infection. Here, we demonstrate that a wireless magnetothermal approach to DBS (mDBS) can provide similar therapeutic benefits in two mouse models of Parkinson’s disease, the bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and in the unilateral 6-hydroxydopamine (6-OHDA) model. We show magnetothermal neuromodulation in untethered moving mice through the activation of the heat-sensitive capsaicin receptor (transient receptor potential cation channel subfamily V member 1, TRPV1) by synthetic magnetic nanoparticles. When exposed to an alternating magnetic field, the nanoparticles dissipate heat, which triggers reversible firing of TRPV1-expressing neurons. We found that mDBS in the subthalamic nucleus (STN) enables remote modulation of motor behavior in healthy mice. Moreover, mDBS of the STN reversed the motor deficits in a mild and severe parkinsonian model. Consequently, this approach is able to activate deep-brain circuits without the need for permanently implanted hardware and connectors.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhe Zhao ◽  
Jingwen Ning ◽  
Xiu-qi Bao ◽  
Meiyu Shang ◽  
Jingwei Ma ◽  
...  

Abstract Background Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. Results We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. Conclusions Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis.


Sign in / Sign up

Export Citation Format

Share Document