scholarly journals Clonal pattern dynamics in tumor: the concept of cancer stem cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fabrizio Olmeda ◽  
Martine Ben Amar

Abstract We present a multiphase model for solid tumor initiation and progression focusing on the properties of cancer stem cells (CSC). CSCs are a small and singular cell sub-population having outstanding capacities: high proliferation rate, self-renewal and extreme therapy resistance. Our model takes all these factors into account under a recent perspective: the possibility of phenotype switching of differentiated cancer cells (DC) to the stem cell state, mediated by chemical activators. This plasticity of cancerous cells complicates the complete eradication of CSCs and the tumor suppression. The model in itself requires a sophisticated treatment of population dynamics driven by chemical factors. We analytically demonstrate that the rather important number of parameters, inherent to any biological complexity, is reduced to three pivotal quantities.Three fixed points guide the dynamics, and two of them may lead to an optimistic issue, predicting either a control of the cancerous cell population or a complete eradication. The space environment, critical for the tumor outcome, is introduced via a density formalism. Disordered patterns are obtained inside a stable growing contour driven by the CSC. Somewhat surprisingly, despite the patterning instability, the contour maintains its circular shape but ceases to grow for a typical size independently of segregation patterns or obstacles located inside.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe3445
Author(s):  
Yicun Wang ◽  
Jinhui Wu ◽  
Hui Chen ◽  
Yang Yang ◽  
Chengwu Xiao ◽  
...  

Cancer stem cells (CSCs) are involved in tumorigenesis, recurrence, and therapy resistance. To identify critical regulators of sarcoma CSCs, we performed a reporter-based genome-wide CRISPR-Cas9 screen and uncovered Kruppel-like factor 11 (KLF11) as top candidate. In vitro and in vivo functional annotation defined a negative role of KLF11 in CSCs. Mechanistically, KLF11 and YAP/TEAD bound to adjacent DNA sites along with direct interaction. KLF11 recruited SIN3A/HDAC to suppress the transcriptional output of YAP/TEAD, which, in turn, promoted KLF11 transcription, forming a negative feedback loop. However, in CSCs, this negative feedback was lost because of epigenetic silence of KLF11, causing sustained YAP activation. Low KLF11 was associated with poor prognosis and chemotherapy response in patients with sarcoma. Pharmacological activation of KLF11 by thiazolidinedione effectively restored chemotherapy response. Collectively, our study identifies KLF11 as a negative regulator in sarcoma CSCs and potential therapeutic target.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5098
Author(s):  
Sarah E. Mudra ◽  
Pritam Sadhukhan ◽  
M. Talha Ugurlu ◽  
Shorna Alam ◽  
Mohammad O. Hoque

Resistance to cancer therapy remains a significant obstacle in treating patients with various solid malignancies. Exposure to current chemotherapeutics and targeted agents invariably leads to therapy resistance, heralding the need for novel agents. Cancer stem cells (CSCs)—a subpopulation of tumor cells with capacities for self-renewal and multi-lineage differentiation—represent a pool of therapeutically resistant cells. CSCs often share physical and molecular characteristics with the stem cell population of the human body. It remains challenging to selectively target CSCs in therapeutically resistant tumors. The generation of CSCs and induction of therapeutic resistance can be attributed to several deregulated critical growth regulatory signaling pathways such as WNT/β-catenin, Notch, Hippo, and Hedgehog. Beyond growth regulatory pathways, CSCs also change the tumor microenvironment and resist endogenous immune attack. Thus, CSCs can interfere with each stage of carcinogenesis from malignant transformation to the onset of metastasis to tumor recurrence. A thorough review of novel targeted agents to act against CSCs is fundamental for advancing cancer treatment in the setting of both intrinsic and acquired resistance.


FEBS Journal ◽  
2014 ◽  
Vol 281 (21) ◽  
pp. 4779-4791 ◽  
Author(s):  
Selcuk Colak ◽  
Jan P. Medema

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1450 ◽  
Author(s):  
Patrick Santos ◽  
Fausto Almeida

Tumor microenvironment (TME) is composed of different cellular populations, such as stromal, immune, endothelial, and cancer stem cells. TME represents a key factor for tumor heterogeneity maintenance, tumor progression, and drug resistance. The transport of molecules via extracellular vesicles emerged as a key messenger in intercellular communication in the TME. Exosomes are small double-layered lipid extracellular vesicles that can carry a variety of molecules, including proteins, lipids, and nucleic acids. Exosomal miRNA released by cancer cells can mediate phenotypical changes in the cells of TME to promote tumor growth and therapy resistance, for example, fibroblast- and macrophages-induced differentiation. Cancer stem cells can transfer and enhance drug resistance in neighboring sensitive cancer cells by releasing exosomal miRNAs that target antiapoptotic and immune-suppressive pathways. Exosomes induce drug resistance by carrying ABC transporters, which export chemotherapeutic agents out of the recipient cells, thereby reducing the drug concentration to suboptimal levels. Exosome biogenesis inhibitors represent a promising adjunct therapeutic approach in cancer therapy to avoid the acquisition of a resistant phenotype. In conclusion, exosomal miRNAs play a crucial role in the TME to confer drug resistance and survivability to tumor cells, and we also highlight the need for further investigations in this promising field.


2015 ◽  
Vol 31 ◽  
pp. 16-27 ◽  
Author(s):  
Monica Cojoc ◽  
Katrin Mäbert ◽  
Michael H. Muders ◽  
Anna Dubrovska

2015 ◽  
Vol 75 (6) ◽  
pp. 924-929 ◽  
Author(s):  
Valery Adorno-Cruz ◽  
Golam Kibria ◽  
Xia Liu ◽  
Mary Doherty ◽  
Damian J. Junk ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 633 ◽  
Author(s):  
Ana Čipak Gašparović ◽  
Lidija Milković ◽  
Nadia Dandachi ◽  
Stefanie Stanzer ◽  
Iskra Pezdirc ◽  
...  

Oxidative stress plays a role in carcinogenesis, but it also contributes to the modulation of tumor cells and microenvironment caused by chemotherapeutics. One of the consequences of oxidative stress is lipid peroxidation, which can, through reactive aldehydes such as 4-hydroxy-2-nonenal (HNE), affect cell signaling pathways. On the other hand, cancer stem cells (CSC) are now recognized as a major factor of malignancy by causing metastasis, relapse, and therapy resistance. Here, we evaluated whether oxidative stress and HNE modulation of the microenvironment can influence CSC growth, modifications of the epithelial to mesenchymal transition (EMT) markers, the antioxidant system, and the frequency of breast cancer stem cells (BCSC). Our results showed that oxidative changes in the microenvironment of BCSC and particularly chronic oxidative stress caused changes in the proliferation and growth of breast cancer cells. In addition, changes associated with EMT, increase in glutathione (GSH) and Nuclear factor erythroid 2-related factor 2 (NRF2) were observed in breast cancer cells grown on HNE pretreated collagen and under chronic oxidative stress. Our results suggest that chronic oxidative stress can be a bidirectional modulator of BCSC fate. Low levels of HNE can increase differentiation markers in BCSC, while higher levels increased GSH and NRF2 as well as certain EMT markers, thereby increasing therapy resistance.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jenny E. Chu ◽  
Alison L. Allan

Breast cancer is a prevalent disease worldwide, and the majority of deaths occur due to metastatic disease. Clinical studies have identified a specific pattern for the metastatic spread of breast cancer, termed organ tropism; where preferential secondary sites include lymph node, bone, brain, lung, and liver. A rare subpopulation of tumor cells, the cancer stem cells (CSCs), has been hypothesized to be responsible for metastatic disease and therapy resistance. Current treatments are highly ineffective against metastatic breast cancer, likely due to the innate therapy resistance of CSCs and the complex interactions that occur between cancer cells and their metastatic microenvironments. A better understanding of these interactions is essential for the development of novel therapeutic targets for metastatic disease. This paper summarizes the characteristics of breast CSCs and their potential metastatic microenvironments. Furthermore, it raises the question of the existence of a CSC niche and highlights areas for future investigation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Esther Hernández-SanMiguel ◽  
Ricardo Gargini ◽  
Teresa Cejalvo ◽  
Berta Segura-Collar ◽  
Paula Núñez-Hervada ◽  
...  

Glioblastoma (GBM) is the most common and devastating primary brain tumor. The presence of cancer stem cells (CSCs) has been linked to their therapy resistance. Molecular and cellular components of the tumor microenvironment also play a fundamental role in the aggressiveness of these tumors. In particular, high levels of hypoxia and reactive oxygen species participate in several aspects of GBM biology. Moreover, GBM contains a large number of macrophages, which normally behave as immunosuppressive tumor-supportive cells. In fact, the presence of both, hypoxia and M2-like macrophages, correlates with malignancy and poor prognosis in gliomas. Antioxidant agents, as nutritional supplements, might have antitumor activity. Ocoxin® oral solution (OOS), in particular, has anti-inflammatory and antioxidant properties, as well as antitumor properties in several neoplasia, without known side effects. Here, we describe how OOS affects stem cell properties in certain GBMs, slowing down their tumor growth. In parallel, OOS has a direct effect on macrophage polarization in vitro and in vivo, inhibiting the protumoral features of M2 macrophages. Therefore, OOS could be a feasible candidate to be used in combination therapies during GBM treatment because it can target the highly resilient CSCs as well as their supportive immune microenvironment, without adding toxicity to conventional treatments.


Sign in / Sign up

Export Citation Format

Share Document