scholarly journals Extinction-resistant attention to long-term conditioned threat is indexed by selective visuocortical alpha suppression in humans

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian Panitz ◽  
Andreas Keil ◽  
Erik M. Mueller

Abstract Previous electrophysiological studies in humans have shown rapid modulations of visual attention after conditioned threat vs. safety cues (<500 ms post-stimulus), but it is unknown whether this attentional prioritization is sustained throughout later time windows and whether it is robust to extinction. To investigate sustained visual attention, we assessed visuocortical alpha suppression in response to conditioned and extinguished threat. We reanalysed data from N = 87 male participants that had shown successful long-term threat conditioning and extinction in self reports and physiological measures in a two-day conditioning paradigm. The current EEG time-frequency analyses on recall test data on Day 2 revealed that previously threat-conditioned vs. safety cues evoked stronger occipital alpha power suppression from 600 to 1200 ms. Notably, this suppression was resistant to previous extinction. The present study showed for the first time that threat conditioning enhances sustained modulation of visuocortical attention to threat in the long term. Long-term stability and extinction resistance of alpha suppression suggest a crucial role of visuocortical attention mechanisms in the maintenance of learned fears.

2019 ◽  
Author(s):  
Christian Panitz ◽  
Andreas Keil ◽  
Erik M. Mueller

AbstractWhile ERP studies have shown heightened early visual attention to conditioned threat, it is unknown whether this attentional prioritization is sustained throughout later processing stages and whether it is robust to extinction. To investigate sustained visual attention, we assessed visuocortical alpha suppression in response to conditioned and extinguished threat. N = 87 participants underwent a two-day threat conditioning paradigm with acquisition and extinction on one day and a critical recall test one day later. EEG time-frequency analyses revealed that, on Day 2, threat-conditioned vs. safety cues evoked stronger occipital alpha power suppression from 600 to 1200 ms. Notably, this suppression was resistant to extinction. The present study showed for the first time that threat conditioning enhances sustained modulation of visuocortical attention to threat in the long term. The long-term stability and extinction resistance of alpha suppression suggests a crucial role of visuocortical attention mechanisms in the maintenance of learned fears.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1589 ◽  
Author(s):  
Simone M. P. Meroni ◽  
Katherine E. A. Hooper ◽  
Tom Dunlop ◽  
Jenny A. Baker ◽  
David Worsley ◽  
...  

The fully printable carbon triple-mesoscopic perovskite solar cell (C-PSC) has already demonstrated good efficiency and long-term stability, opening the possibility of lab-to-fab transition. Modules based on C-PSC architecture have been reported and, at present, are achieved through the accurate registration of each of the patterned layers using screen-printing. Modules based on this approach were reported with geometric fill factor (g-FF) as high as 70%. Another approach to create the interconnects, the so-called scribing method, was reported to achieve more than 90% g-FF for architectures based on evaporated metal contacts, i.e., without a carbon counter electrode. Here, for the first time, we adopt the scribing method to selectively remove materials within a C-PSC. This approach allowed a deep and selective scribe to open an aperture from the transparent electrode through all the layers, including the blocking layer, enabling a direct contact between the electrodes in the interconnects. In this work, a systematic study of the interconnection area between cells is discussed, showing the key role of the FTO/carbon contact. Furthermore, a module on 10 × 10 cm2 substrate with the optimised design showing efficiency over 10% is also demonstrated.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


2020 ◽  
Vol 17 ◽  
Author(s):  
Anisha D’Souza ◽  
Ranjita Shegokar

: In recent years, SLNs and NLCs are among the popular drug delivery systems studied for delivery of lipophilic drugs. Both systems have demonstrated several beneficial properties as an ideal drug-carrier, optimal drug-loading and good long-term stability. NLCs are getting popular due to their stability advantages and possibility to load various oil components either as an active or as a matrix. This review screens types of oils used till date in combination with solid lipid to form NLCs. These oils are broadly classified in two categories: Natural oils and Essential oils. NLCs offer range advantages in drug delivery due to the formation of imperfect matrix owing to the presence of oil. The type and percentage of oil used determines optimal drug loading and stability. Literature shows that variety of oils is used in NLCs mainly as matrix, which is from natural origin, triglycerides class. On the other hand, essential oils not only serve as a matrix but as an active. In short, oil is the key ingredient in formation of NLCs, hence needs to be selected wisely as per the performance criteria expected.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Marta Kubiak ◽  
Janine Mayer ◽  
Ingo Kampen ◽  
Carsten Schilde ◽  
Rebekka Biedendieck

In biocatalytic processes, the use of free enzymes is often limited due to the lack of long-term stability and reusability. To counteract this, enzymes can be crystallized and then immobilized, generating cross-linked enzyme crystals (CLECs). As mechanical stability and activity of CLECs are crucial, different penicillin G acylases (PGAs) from Gram-positive organisms have proven to be promising candidates for industrial production of new semisynthetic antibiotics, which can be crystallized and cross-linked to characterize the resulting CLECs regarding their mechanical and catalytic properties. The greatest hardness and Young’s modulus determined by indentation with an atomic force microscope were observed for CLECs of Bacillus species FJAT-PGA CLECs (26 MPa/1450 MPa), followed by BmPGA (Priestia megaterium PGA, 23 MPa/1170 MPa) and BtPGA CLECs (Bacillus thermotolerans PGA, 11 MPa/614 MPa). In addition, FJAT- and BtPGA CLECs showed up to 20-fold higher volumetric activities compared to BmPGA CLECs. Correlation to structural characteristics indicated that a high solvent content and low number of cross-linking residues might lead to reduced stability. Furthermore, activity seems to be restricted by small water channels due to severe diffusion limitations. To the best of our knowledge, we show for the first time in this study that the entire process chain for the characterization of diverse industrially relevant enzymes can be performed at the microliter scale to discover the most important relationships and limitations.


2015 ◽  
Vol 43 (6) ◽  
pp. 561-574 ◽  
Author(s):  
Patricia Huddleston ◽  
Bridget K. Behe ◽  
Stella Minahan ◽  
R. Thomas Fernandez

Purpose – The purpose of this paper is to elucidate the role that visual measures of attention to product and information and price display signage have on purchase intention. The authors assessed the effect of visual attention to the product, information or price sign on purchase intention, as measured by likelihood to buy. Design/methodology/approach – The authors used eye-tracking technology to collect data from Australian and US garden centre customers, who viewed eight plant displays in which the signs had been altered to show either price or supplemental information (16 images total). The authors compared the role of visual attention to price and information sign, and the role of visual attention to the product when either sign was present on likelihood to buy. Findings – Overall, providing product information on a sign without price elicited higher likelihood to buy than providing a sign with price. The authors found a positive relationship between visual attention to price on the display sign and likelihood to buy, but an inverse relationship between visual attention to information and likelihood to buy. Research limitations/implications – An understanding of the attention-capturing power of merchandise display elements, especially signs, has practical significance. The findings will assist retailers in creating more effective and efficient display signage content, for example, featuring the product information more prominently than the price. The study was conducted on a minimally packaged product, live plants, which may reduce the ability to generalize findings to other product types. Practical implications – The findings will assist retailers in creating more effective and efficient display signage content. The study used only one product category (plants) which may reduce the ability to generalize findings to other product types. Originality/value – The study is one of the first to use eye-tracking in a macro-level, holistic investigation of the attention-capturing value of display signage information and its relationship to likelihood to buy. Researchers, for the first time, now have the ability to empirically test the degree to which attention and decision-making are linked.


2022 ◽  
Vol 16 (1) ◽  
pp. e0010000
Author(s):  
Priyanka Rai ◽  
Dhiraj Saha

Introduction Lymphatic filariasis causes long term morbidity and hampers the socio-economic status. Apart from the available treatments and medication, control of vector population Culex quinquefasciatus Say through the use of chemical insecticides is a widely applied strategy. However, the unrestrained application of these insecticides over many decades has led to resistance development in the vectors. Methods In order to determine the insecticide susceptibility/resistance status of Cx. quinquefasciatus from two filariasis endemic districts of West Bengal, India, wild mosquito populations were collected and assayed against six different insecticides and presence of L1014F; L1014S kdr mutations in the voltage-gated sodium channel gene was also screened along with the use of synergists to evaluate the role of major detoxifying enzymes in resistance development. Results The collected mosquito populations showed severe resistance to insecticides and the two synergists used–PBO (piperonyl butoxide) and TPP (triphenyl phosphate), were unable to restore the susceptibility status of the vector thereupon pointing towards a minor role of metabolic enzymes. kdr mutations were present in the studied populations in varying percent with higher L1014F frequency indicating its association with the observed resistance to pyrethroids and DDT. This study reports L1014S mutation in Cx. quinquefasciatus for the first time.


2019 ◽  
Vol 484 (2) ◽  
pp. 238-242
Author(s):  
N. A. Semenova ◽  
P. E. Menshchikov ◽  
A. V. Manzhurtsev ◽  
M. V. Ublinskiy ◽  
T. A. Akhadov ◽  
...  

Intracellular concentrations of N acetyaspartate (NAA), aspartate (Asp) and glutamate (Glu) were determined for the first time in human brain in vivo, and the effect of severe traumatic brain injury on NAA synthesis in acute and late post-traumatic period was investigated. In MRI‑negative frontal lobes one day after injury Asp and Glu levels were found to decrease by 45 and 35%, respectively, while NAA level decreased by only 16%. A negative correlation between NAA concentration and the ratio of Asp/Glu concentrations was found. In the long-term period, Glu level returned to normal, Asp level remained below normal by 60%, NAA level was reduced by 65% relative to normal, and Asp/Glu ratio significantly decreased. The obtained results revealed leading role of the neuronal aspartate-malate shuttle in violation of NAA synthesis.


Kybernetes ◽  
2019 ◽  
Vol 48 (4) ◽  
pp. 751-768 ◽  
Author(s):  
Lance Nizami

Purpose This study aims to examine the observer’s role in “infant psychophysics”. Infant psychophysics was developed because the diagnosis of perceptual deficits should be done as early in a patient’s life as possible, to provide efficacious treatment and thereby reduce potential long-term costs. Infants, however, cannot report their perceptions. Hence, the intensity of a stimulus at which the infant can detect it, the “threshold”, must be inferred from the infant’s behavior, as judged by observers (watchers). But whose abilities are actually being inferred? The answer affects all behavior-based conclusions about infants’ perceptions, including the well-proselytized notion that auditory stimulus-detection thresholds improve rapidly during infancy. Design/methodology/approach In total, 55 years of infant psychophysics is scrutinized, starting with seminal studies in infant vision, followed by the studies that they inspired in infant hearing. Findings The inferred stimulus-detection thresholds are those of the infant-plus-watcher and, more broadly, the entire laboratory. The thresholds are therefore tenuous, because infants’ actions may differ with stimulus intensity; expressiveness may differ between infants; different watchers may judge infants differently; etc. Particularly, the watcher’s ability to “read” the infant may improve with the infant’s age, confounding any interpretation of perceptual maturation. Further, the infant’s gaze duration, an assumed cue to stimulus detection, may lengthen or shorten nonlinearly with infant age. Research limitations/implications Infant psychophysics investigators have neglected the role of the observer, resulting in an accumulation of data that requires substantial re-interpretation. Altogether, infant psychophysics has proven far too resilient for its own good. Originality/value Infant psychophysics is examined for the first time through second-order cybernetics. The approach reveals serious unresolved issues.


2019 ◽  
Vol 11 (11) ◽  
pp. 3207-3217
Author(s):  
Enrico Sandro Colizzi ◽  
Paulien Hogeweg

Abstract Clashes between transcription and replication complexes can cause point mutations and chromosome rearrangements on heavily transcribed genes. In eukaryotic ribosomal RNA genes, the system that prevents transcription–replication conflicts also causes frequent copy number variation. Such fast mutational dynamics do not alter growth rates in yeast and are thus selectively near neutral. It was recently found that yeast regulates these mutations by means of a signaling cascade that depends on the availability of nutrients. Here, we investigate the long-term evolutionary effect of the mutational dynamics observed in yeast. We developed an in silico model of single-cell organisms whose genomes mutate more frequently when transcriptional load is larger. We show that mutations induced by high transcriptional load are beneficial when biased toward gene duplications and deletions: they decrease mutational load even though they increase the overall mutation rates. In contrast, genome stability is compromised when mutations are not biased toward gene duplications and deletions, even when mutations occur much less frequently. Taken together, our results show that the mutational dynamics observed in yeast are beneficial for the long-term stability of the genome and pave the way for a theory of evolution where genetic operators are themselves cause and outcome of the evolutionary dynamics.


Sign in / Sign up

Export Citation Format

Share Document