scholarly journals Evolution of native defects in ZnO nanorods irradiated with hydrogen ion

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tengfei Wu ◽  
Aiji Wang ◽  
Li Zheng ◽  
Guangfu Wang ◽  
Qingyun Tu ◽  
...  

AbstractThis work reports the study on the evolution of native defects in ZnO nanorods irradiated with hydrogen ion. ZnO nanorod arrays grown vertically on silicon substrates were irradiated by 180 keV H+ ions to a total fluence of 8.50 × 1015 ions/cm2. The X-ray diffraction spectra, photoluminescence spectra before and after irradiation and the real-time ionoluminescence spectra of the nanorod arrays during the irradiating process were measured. Formation and evolution of defects during H+ ion irradiation and effects of irradiation on the crystal structure and optical property were studied. Blue shift of exciton emission, shrink of lattice c and improvement of the crystallinity of ZnO nanorods after irradiation were observed. Simple surface passivation of the nanorods could improve the radiation resistance. Formation and evolution of the defects during H+ ion irradiation could be clarified into four stages and the related models are provided.

2007 ◽  
Vol 39 (12-13) ◽  
pp. 937-941
Author(s):  
C. H. Liu ◽  
N. K. Huang ◽  
D. Z. Wang ◽  
B. Yang

2007 ◽  
Vol 121-123 ◽  
pp. 809-812
Author(s):  
Ya Lin Lu ◽  
Iyad A. Dajani ◽  
W.J. Mandeville ◽  
R.J. Knize ◽  
S.S. Mao

In this research, nanoscale spatial resolution p-n junction photodetector arrays were developed using ZnO nanorod arrays grown on p-type silicon substrates. In order to optimize the nanorod array quality, an advanced combinatorial spreadsheet approach was used to optimize the Au catalyst thickness. The crystallinity of these as-grown ZnO nanorods’ was compared to that of bulk and thin film ZnO materials.


2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ken-ichi Fukumoto ◽  
Yoshiki Kitamura ◽  
Shuichiro Miura ◽  
Kouji Fujita ◽  
Ryoya Ishigami ◽  
...  

A set of V–(4–8)Cr–(0–4)Ti alloys was fabricated to survey an optimum composition to reduce the radioactivity of V–Cr–Ti alloys. These alloys were subjected to nano-indenter tests before and after 2-MeV He-ion irradiation at 500 °C and 700 °C with 0.5 dpa at peak damage to investigate the effect of Cr and Ti addition and gas impurities for irradiation hardening behavior in V–Cr–Ti alloys. Cr and Ti addition to V–Cr–Ti alloys for solid–solution hardening remains small in the unirradiated V–(4–8)Cr–(0–4)Ti alloys. Irradiation hardening occurred for all V–Cr–Ti alloys. The V–4Cr–1Ti alloy shows the highest irradiation hardening among all V–Cr–Ti alloys and the gas impurity was enhanced to increase the irradiation hardening. These results may arise from the formation of Ti(CON) precipitate that was produced by He-ion irradiation. Irradiation hardening of V–Cr–1Ti did not depend significantly on Cr addition. Consequently, for irradiation hardening and void-swelling suppression, the optimum composition of V–Cr–Ti alloys for structural materials of fusion reactor engineering is proposed to be a highly purified V–(6–8)Cr–2Ti alloy.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


Sign in / Sign up

Export Citation Format

Share Document